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We want to obtain accurate total energies for light atoms, from QMC.

Why?

• Atoms are a basic building block of condensed matter

• Very accurate experimental estimates of Etot are available for light atoms

• ab initio results accurate enough for comparison are available for H and He (and

arguably Li and Be)

• DMC using ΨT = eJD↑D↓ results in large fixed node errors

• Look at improvements possible by a many determinant trial function

ΨT = eJ ∑

j Dj,↑Dj,↓
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Accurate experimental estimates of total energy

• Spectroscopy gives accurate ionisation energies:

Ne → Ne+

Ne+ → Ne2+

...

Ne8+ → Ne9+

ab initio energy for Ne9+ is available exactly.

Summing differences in total energies for different ions, and one electron energy

gives an estimate of total energy.

We requires the total energy for:

- No relativity or L.S coupling

- Fixed nucleus

- Point charge nucleus

So correct experimental ionisation energies for these effects.

(See Davidson et al. PRA 47 3649 (1993).)
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How much correlation is there?

Comparing the experimental estimate for total energies, and exact numerical Hartree-

Fock energies:

Total energies

Atom −EHF −EExp

He 2.861680 2.90372

Li 7.432727 7.47806

Be 14.573023 14.66736

B 24.529061 24.65391

C 37.688619 37.8450

N 54.400934 54.5892

O 74.809398 75.0673

F 99.409349 99.7339

Ne 128.547098 128.9376

For example, Ec ∼ 0.1 − 0.5 au is typical.

→ Correlation is significant, and needs to be described well.
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Geminal wavefunctions

Variational method with ansatz:

Ψ(R) = Â
[

∑

k wk exp
(

−∑

i
∑

j aij,kr
2
ij

)]

Â is an antisymmetrisation operator.

• Vary {wk, aij,k} to minimise the total energy.

• Includes correlation explicitly but is very expensive.

• Accurate results for Be are possible - Komasa et al. obtain 100.0% of the correla-

tion energy with 12000 parameters.
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Numerical MCHF

Variational method with ansatz:

Ψ(R) = w1|1s2.2s2〉 + w2|1s2.2s1.2p1〉 + w3|1s2.2s2.2p2〉 + ..

• | . . .〉 are Configuration State Functions (CSF), specified by occupancy of sub-

shells of the atom, and the angular momentum of the atom

• | . . .〉 are calculated self-consistently for a given {wj}.

• {wj} are varied to minimise the total energy.

• A set of CSF is specified by excitations from an initial state

• For a complete set of CSF, we would obtain the exact many-body energy
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Convergence is slow:

Ne

NCSF
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.)
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• Slow convergence due inadequate description of electron-electron cusp

• First few CSFs in expansion provide significant correlation energy, even for a closed

shell atom.

• Experimental accuracy not possible.
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Be
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• Dynamic correlation - multiconfiguration expansion does not describe the electron-

electron cusp well → long tail in the convergence is due to this

• Static correlation - multiconfiguration expansion does describe correlation due to

mixing of configuration states close in energy.

eg for Be, |1s2.2s2〉 and |1s2.2p2〉 CSFs have similar energies, so including both

improves energy
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Diffusion Monte Carlo

Typical results using ΨT = eJD↑D↓ from HF with a Gaussian basis give:

Total energy Correlation energy

Atom −E∗
DMC Ec(%)†

He 2.903719(2) 100.0

Li 7.4779(2) 99.6

Be 14.6563(4) 88.3

B 24.6390(5) 88.0

C 37.8283(5) 89.3

N 54.5768(6) 93.4

O 75.0494(6) 93.0

F 99.7165(5) 94.6

Ne 128.922(2) 96.0

∗ Langfelder et al. 1997, † % of Ec obtained by comparison with experimental estimates

Can we improve on this using

ΨT = eJ ∑

j Dj,↑Dj,↓

?
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5 Seperate steps

1 - Perform a numerical MCHF calculation

2 - Decide which of the CSF to use, using some criteria

3 - Transform the CSF expansion into a sum of Slater determinants

4 - Variance minimisation via VMC to obtain a Jastrow-Slater trial function for DMC

5 - Perform DMC to get the fixed node energy.

By varying the weights of each CSF in step 4 the nodal surface is changed to min-

imise the variance of the local energy, so the final DMC calculation is performed using

an optimised nodal surface.
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1) Numerical MCHF calculation

Use code ATSP2K (G.I. Tachiev and C. Froese Fischer)

•Uses symmetry to break problem into a set of coupled self-consistent 1-dimensional

differential equations, which are solved numerically.

• Provides the wj (the weight of each CSF) and the radial part of the single particle

orbitals Rnl(r), one for each subshell.

• Does not provide CSF expanded as Slater determinants.

Specify our CSF expansion in terms of types of excitations.

Be - include all CSF obtained by exciting 1 or 2 electrons from 1s2.2s2 (1S) to any-

thing up to and including the n = 7, l = 4 subshell.

Provides 256 CSF.
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2) Choose CSF to use in QMC

• Choose by weight of CSF. Take a wtol and choose states where wj > wtol

• Choose CSF where MCHF carried out with this CSF only, ECSF , is close to the

HF ground state CSF.
Be

E
c
s
f

(a
.u

.)
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-10

-5

0

1s2 1s1 1s0

A frozen core may be the best decription of static correlation, even if core excitations

have significant wj .
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3) Convert CSF into a sum of Slater determinants

What are the configuration state functions?

• Spherically symmetric, so each CSF is an eigenstate of the total angular momen-

tum operators, L̂,L̂z,Ŝ and Ŝz :

L̂2|X; LMLSMS〉 = L(L + 1)|X; LMLSMS〉
L̂z |X; LMLSMS〉 = ML|X; LMLSMS〉
Ŝ2|X; LMLSMS〉 = S(S + 1)|X; LMLSMS〉
Ŝz |X; LMLSMS〉 = MS |X; LMLSMS〉

• For each angular momentum state, specified by LMLSMS , and each configura-

tion (for example 1s2.2s2) there is a unique CSF.

• They are antisymmetric functions of the set of combined spatial/spin variables X.

• A CSF is a finite sum of determinants constructed from single particle orbitals

φnlm(r) = Rnl(r)Ylm(r̂).
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Combine two different eigenfunctions of angular momenta l1m1s1ms1
and l2m2s2ms2

to give and eigenfunction of angular momenta LMLSMS

Take a linear combination:

|(x1,x2)l1l2s1s2LMLSMS〉′ =
∑

ml1
ml2

∑

ms1
ms2

〈l1l2ml1ml2 |LML〉〈s1s2ms1
ms2

|SMS〉×

|(x1)l1ml1s1ms1
〉|(x2)l2ml2s2ms2

〉

Coefficients are the Clebsh-Gordon coefficients.

• |(x1,x2)l1l2s1s2LMLSMS〉′ is an eigenstate of LMLSMS , but also depends

on the starting states.

• |(x1,x2)l1l2s1s2LMLSMS〉′ is not anti-symmetric on interchange of co-ordinates.
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To obtain an anti-symmetric function we construct a linear combination of these terms

that is anti-symmetric:

|(x1,x2)LMLSMSα〉 =
∑

l1l2s1s2

f(l1l2s1s2α)|(x1,x2)l1l2s1s2LMLSMS〉′

f(l1l2s1s2) are the ‘coefficients of fractional parentage’. The extra index α appears

since distinct linear combinations may sometimes be found that are lineary independant

and antisymmetric.

• |(x1,x2)LMLSMSα〉 is the CSF of combined system.

• This expression is the same if |(x1)l1ml1s1ms1
〉 is a CSF of more than 1-electron.
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So we can couple 2CSFs together to get all the CSF’s that they can combine to give.

Consider B 1s2.2p3.

First consider subshell p.

{|2p1〉}, {|2p1〉} → {|2p2〉}
{|2p1〉}, {|2p2〉} → {|2p3〉}
then subshell s

{|1s1〉}, {|1s1〉} → {|1s2〉}
then couple subshells s and p together

{|1s2〉}, {|2p3〉} → {|1s2.2p3〉}
This gives us a selection of CSF for the full atom, and we pick of the LMLSMS we

require.
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Example: 2 electron in a p-subshell

For 2 electrons in a p-subshell, the 1D (S = 0, L = 2) CSF with ML = 0,MS = 0

is given by

|2p2〉 = R1d.R1d.
1

2
√

3
(|Y1−1Y11χ↑χ↓| + 2|Y10Y10χ↑χ↓| + |Y11Y1−1χ↑χ↓|)

this sum of 3 determinants is 1 of 15 possible CSF that two p electrons may be in:

1 1S CSFs

3 3P CSFs

5 1D CSFs

Two final points:

• Remove terms resulting from permutation of electrons of opposite spin, and renor-

malise to get a sum of products of ↑ and ↓ determinants.

• Take linear combination of ML = ±L to get a real CSF

This is applied to every CSF in the multi-configuration expansion to generate a multi-

determinant expansion for use in QMC.
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Summary

• MCHF calculation for Be 1S (ML = 0, MS = 0)

• Choose CSFs with large wj

• MCHF calculation with this subset of CSF

• Convert result to real multi-determinant expansion for QMC

• Introduce a Jastrow factor

• Optimise Jastrow and {wj} parameters

• Perform DMC calculation
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Be 1S

Consider 4 different cases, each for different wtol:

NCSF NDet Config.

1 1 1s2.2s2

2 4 1s2.2s2

1s2.2p2

4 13 1s2.2s2

1s2.2p2

1s2.2p1.3p1

8 23 1s2.2s2

1s2.2s1.3s1

1s2.2s1.4s1

1s2.2p2

1s2.2p1.3p1

1s2.3s2

1s2.3p2

1s2.3d2
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Resulting total energies are

NCSF NDet EMCHF EV MC EDMC

1 1 −14.573023 −14.6264(9) −14.6564(5)

2 4 −14.616845 −14.6621(6) −14.66720(3)

4 13 −14.616977 −14.6604(7) −14.66721(4)

8 23 −14.618906 −14.6647(6) −14.66727(3)

256 2869 −14.662379 − −

EDMC improves with increasing NDet, and for NDet ≥ 4 results agree well with

experimental results.

For NDet = 23 we recover 97.2% and 99.9% of the correlation energy for VMC

and DMC respectively.

For Be to go beyond a modest MCHF energy, we need NDet ≥ 4 in DMC.
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Conclusions

• Multi-determinant trial functions for DMC can be constructed from numerical MC-

SCF atomic calculations

• Accuracy increases with number of Configurations included, if we exclude core

excitations

• How does it do for the rest of the first row atoms?

• We can answer the question ‘What is a useful number of determinants to use in

atomic DMC?’
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