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Metal-insulator transitions
What is an insulator?
e Phenomenological

- Has vanishing electrical conductivity in a (weak) static electrical field
at OK.

- Supports bulk macroscopic polarization (pure ground state property!).
e Band theory (‘one-electron wave functions')
Fermi level lies within a band gap rather than within a band.

e Quantum Monte Carlo (‘many-electron wave functions’)

Thought required.. [What about Kohn theory (1964) and modern
reinterpretations?]

Associated questions
e What is meant by localized/delocalized electrons?

e What are strongly correlated electrons?



Connections

DFT and Hartree Fock
calculations

(MDT work on magnetic
insulators)

Metal-insulator
transitions from the
viewpoint of the
'strongly—correlated
electrons’ community.

Modern theory of

(Resta et al.)

New experimental
techniques

(diamond anvil cells,
Mossbauer spectroscopy., )

polarization/localization -~

Quantum Monte Carlo
calculations.

True many—body
wave functions.

INTERESTING
RESEARCH
PROJECT?
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Books

e Metal-insulator Transitions 2nd edition, N. Mott (Taylor-Francis 1990)

e The Mott Metal-insulator Transition : Models and Methods, F.Gebhard
(Springer, 1997)

GEBHARD IS GOSPEL

i.e. for the purposes of this talk, Gebhard is taken to represent the

'strongly-correlated electron’ viewpoint, which we will attempt to

understand and interpret in terms more familiar to practitioners of
computational electronic structure theory.
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Two fundamental requirements for electron transport

e Quantum-mechanical states for electron-hole excitations must be
available at energies immediately above the energy of the ground state
since the external field provides vanishingly small energy (w — 0)

e These excitations must describe delocalized charges that can contribute
to transport over the macroscopical sample size.
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Scenarios for gap formation

e Quantum phase transition

Gap opens as a consequence of the competition between the carriers’
kinetic and interaction energy.

— "robust gap” (doesn't disappear at high T')

e Thermodynamic phase transitions

Gap opens as a consequence of the formation of long-range order
(symmetry breaking) at some finite temperature.

— "soft gap” (disappears at high T')
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Gebhard classification of insulators

Specify four basic classes of insulator, based on dominant interaction that
causes the insulating behaviour.

Electron-ion interaction

e Band insulators due to the electrons’ interaction with the periodic
potential of the ions.

e Peilerls insulators due to the electrons’ interaction with static lattice
deformations.

e Anderson insulators due to the presence of disorder.

Electron-electron interaction

e Mott insulators due to the electrons’ interaction with each other.



Gebhard on band theory

" For a band insulator the interaction between electrons and the periodic
lon potential gives rise to an energy gap between the lowest conduction
band and the highest valence band. Consequently there are no free carriers
for the transport of charge. A band insulator is possible only for an even
number of valence electrons per lattice unit cell” .



Gebhard on band theory

" For a band insulator the interaction between electrons and the periodic
lon potential gives rise to an energy gap between the lowest conduction
band and the highest valence band. Consequently there are no free carriers
for the transport of charge. A band insulator is possible only for an even
number of valence electrons per lattice unit cell” .

Assumptions

e "electron-electron interaction neglected or treated within effective
single-electron approximation”

e " For simplicity we neglect spin-orbit coupling. As a good approximation
each band is then two-fold spin degenerate i.e. each band may be occupied
with two electrons per k point.”

— completely filled bands cannot contribute to transport (since for each
state with crystal momentum k the state with momentum —k is also
occupied so that both contributions to transport cancel).



Band insulators
Impose periodic boundary conditions : the one-electron wave functions are
then Bloch functions.

Bloch functions obey BLOCH'S THEOREM:

U, (r) = e Ty, (r) or U(r +t) = U(r)ek?

] —— wia

Count states in each energy range, and classify:

wide-gap intrinsic two-band one-band
insiilator semiconductor semimetal metal

Increasing pressure (for example) will change shape of bands and may lead
to metal-insulator transitions of various sorts. 9



What is a Mott insulator?

Gebhard

e "For a Mott insulator the electron-electron interaction leads to the
occurence of local moments. The gap in the excitation spectrum for
charge excitations may arise from the long-range order of the pre-formed
moments (Mott-Heisenberg insulator) or by a quantum phase transition
induced by charge and/or spin correlations (Mott-Hubbard insulator)”

e "Mott insulating behaviour is understood as a cooperative many-electron
phenomenon.. [It] cannot be understood within the framework of a
single-electron theory - many-body effects must be included.”

e "..materials in which electron-electron interactions [are so| important
that a naive band structure approach will no longer be appropriate”
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What is a Mott insulator?

Gebhard

e "For a Mott insulator the electron-electron interaction leads to the
occurence of local moments. The gap in the excitation spectrum for
charge excitations may arise from the long-range order of the pre-formed
moments (Mott-Heisenberg insulator) or by a quantum phase transition
induced by charge and/or spin correlations (Mott-Hubbard insulator)”

e "Mott insulating behaviour is understood as a cooperative many-electron
phenomenon.. [It] cannot be understood within the framework of a
single-electron theory - many-body effects must be included.”

e "..materials in which electron-electron interactions [are so| important
that a naive band structure approach will no longer be appropriate”

Mott
e "'..a material that would be a metal if no moments were formed.

...depends on the existence of moments and not on whether or not they
are ordered”

Pasternak (an experimentalist)

e "In this W > U] regime, the d-electron correlation collapses, giving rise
to an insulator-metal transition concurrent with a magnetic moment
breakdown. This phenomenon is called the Mott transition”.

10



Anderson insulators

4
e raﬁfﬁ"ff{:}‘%

ME‘HM stutles %
i .

Fig. 1.6. Increasing the strength 4 of the disorder potential in the Anderson model
of disorder leads to a broadening of the density of states. The number of localized
states increases until the mobility edges for electrons and holes coincide for &:. In
the figure B denotes the bandwidth at zero disorder, and A is the energy variable

(from [1.52, Chap. 8.9]).

11



Linear chain of hydrogen atoms

" Consider a linear chain of hydrogen atoms with a lattice constant of 1 A.
This has one electron per atom in the conduction band and is therefore
metallic. Imagine we now dilate the lattice parameter of the crystal to 1
metre. We would agree that at some point in this dilation process the
crystal must become an insulator because certainly when the atoms are 1
metre apart they are not interacting. But band theory says that the crystal
remains a metal because at all dilations the energy difference between
occupied and unoccupied states remains vanishingly small. Now look at
this thought experiment from the other way. Why is the crystal with a
lattice parameter of 1 metre an insulator? Because to transfer an electron
from one atom to another we have to supply an ionization energy, I to
remove the electron and then we recover the electron affinity, A, when we
add the electron to the neutral H atom. The energy cost in this process is
U =1 — A. Band theory ignores terms such as these.” [Sutton’s book]

Hubbard model

H =) ;tijaicaje + U nitng

12



DFT treatment of linear hydrogen chain

Examine linear chain of H atoms in band theory

e Genuine 1-dimensional periodic boundary conditions

e High quality local (Gaussian) basis set centred on the H atoms.

Properties of isolated H atom computed with this basis

Calculated Exact
Total energy (HF) -0.499993 Ha -0.5 Ha
Virial coefficient 1.00007 1

Hyperfine coupling constant 1419.3 MHz 1420 MHz

13



Band theory of linear hydrogen chain

(DFT band calculations with LDA exchange-correlation functional)

1 atom per cell
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Band theory of linear hydrogen chain

(DFT band calculations with LDA exchange-correlation functional)

1 atom per cell
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Metallic at all dilations
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Correlated electron systems
"Strong Coulomb interactions” : actually statement about pair correlation
funci
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Correlated electron systems

"Strong Coulomb interactions” : actually statement about pair correlation

fu n C1 VML Vit
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T at hond conter roat hobd certer
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‘'TRUE MANY-BODY EFFECTS' HERE

correlated electron system - " non-vanishing pair correlation function
between T- and |-electrons”

strongly-correlated system - " pair correlation functions for electrons of
same spin and electrons of opposite spin are comparable in size"

So to describe strong-correlations just need to make the wave function
flexible enough for T- and |-electrons to avoid each other?

15



Spin polarization
Need single determinants of one-electron spin orbitals!

e Restricted form All spin orbitals are pure space-spin products of the form
o, or ¢, 3 and are occupied singly or in pairs with a common orbital

factor ¢,,.
e Unrestricted form Spin orbitals no longer occupied in pairs but still pure

space-spin products ¢, or ¢, 3. However, now have different spatial

factors ¢,, and ¢,, for different spins.
e General unrestricted form No longer restrict to simple product form.

Each spin orbital now a 2-component complex spinor orbital:
U, =ofa + (/ﬁfﬁ and ¥y = ¢S + (bgﬁ. Non-collinear spins.

Pretty pictures of non-collinear spin states
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Spin-unrestricted band treatment of
linear hydrogen chain
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Band structure of linear hydrogen chain

Hydrogen linear chain (a=3 A)

Band structure

0.051

-0.05F

S
e

Energy (au)
S
=
[6)]

S
)

-0.25F

-T/2a 0 m2a
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Spin-unrestricted band treatment of
linear hydrogen chain

Hydrogen linear chain
Density of states
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Total energy (a.u.)

Spin-unrestricted band treatment of

linear hydrogen chain

Total energy of a linear chain of hydrogen atoms

(spin-unrestricted DFT band calculations with LSDA functional)
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Hubbard bands

[Mott book]

PREd bbbt ittt tH

(a)

1Ottt —tiiotit—=tii104t

(b)

Let 7/, be the many electron wave function with an extra electron on atom
1. A state in which the electron moves with wave number £k can be
described by the many-electron wave function:

Z e’ikaiwi
7

These states form a band of energies - this is called the upper Hubbard
band - (a). Similarly, the lower Hubbard band - (b) - represents a band of
states in which a ‘hole’ can move. Metal-insulator transition occurs when
these bands overlap.

21



N+1/N-1 system
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Should be around 13 eV.
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Effect of extra electron on the density of states
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Effect
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Localization

Insulating state of matter is characterized by gap to low-lying excitations,
but also by qualitative features of the ground state - which sustains
macroscopic polarization and is localized.

Kohn 1964

Localization is a property of the many-electron wave function: insulating
behaviour arises whenever the ground state wave function of an extended
system breaks up into a sum of functions W,; which are localized in
essentially disconnected regions Rj; of configuration space i.e.

+o00
U(xy,....,x5) = >, WYuy(xy,...,xn)
M=—oc0

where for a large supercell W, and W ,,» have an exponentially small
overlap for M’ # M. Under such a hypothesis, Kohn proved that the dc
conductivity vanishes.

Hence, electronic localization in insulators does not occur in real space
(charge density) but in configuration space (wave function).

25



Many-body phase operators

e Both macroscopic polarization and electron localization are expectation
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Many-body phase operators

e Both macroscopic polarization and electron localization are expectation

values of ‘many-body phase operators’ z](\?‘>, where

o) = (W]l T X | )

These quantities are zero for metals!

e Ground state expectation value of the position operator in periodic
boundary conditions

L
(X) = %ImlnzN

e Phase of z](\?‘) used to define the macroscopic polarization of an insulator.

e Modulus of z](\?) used to define the localization tensor (r,rg) (finite in

insulators, diverges in metals).
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Interesting connections
One-particle density matrix

(rors) = —— / dr / dr'(r — 1')a(r — )| P, 1)

an

cell allspace

which is the second moment of the (squared) density matrix in the
coordinate r — 1’
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Interesting connections
One-particle density matrix

(rors) = —— / dr / dr'(r — 1')a(r — )| P, 1)

2nb

cell allspace

which is the second moment of the (squared) density matrix in the
coordinate r — 1’

Conductivity

Al
(rarg) = Ve / = Re o os(w)
0

2me2ng W

where 0,3 is the conductivity tensor. LHS property of ground state, RHS
measurable property related to electronic excitations =—> localization
tensor is a measurable property.

"Nearsightedness”

is the fact that the density matrix P(r — r’) is short range in the variable
r — r’. The localization tensor is a measure of this.

27



'Crystal field’ splitting of d orbitals (octahedral coordination)

28



Electronic states in NiO

Interactions:

Parameterize on-site interactions in terms of U and U’ (Coulomb

interactions between electrons in same (U) or different (U’) d orbitals) and

J (exchange interaction between same spin electrons). Augment with

Ao i.e. crystal-field splitting energy due to neighbours.

On a Ni site in NiO:

T-spin e, electron feels:  7U' —4J + Acrp

T-spin tg, electron feels: U + 6U" —4.J

|-spin e, electron feels: U+ 7U" —3J + Acr

|-spin ty, electron feels: U + 6U" —2J

Expt: U=5.8eV, J=0.67eV, U'=4.5eV, Acp=1.1eV

up spin

U_3J+A CF

down spin

xR

eg

2J-A CF

€g

t2g
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Compare model with NiO UHF DOS
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DENSITY OF STATES

DENSITY OF STATES

effect of magnetic ordering

Antiferromagnetic (AF2)
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DENSITY OF STATES

DENSITY OF STATES

UHF vs. LDA

Antiferromagnetic (AF2)
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Ni t2g
....... total oxygen

up-spin
down-spin
| | |
-0.5 0.25 0.5 0.75
ENERGY relative to highest occupied level (au)
[ I I I
LSDA NIty
AF2 — Nieg,
------- total oxygen
up-spin
down-spin
| | |
-0.5 -0.25 0 0.25 0.5 0.75

ENERGY relative to highest occupied level (au)

32



DENSITY OF STATES

DENSITY OF STATES

UHF vs. GGA
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DENSITY OF STATES

DENSITY OF STATES

UHF vs. B3LYP

I [ I I I
Antiferromagnetic (AF2) |— Nie,
Ni ty
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Band gaps with the B3LYP functional

Material | Expt. (eV) | B3LYP (eV)
Si 3.5 3.8
Diamond 5.5 5.8
GaAs 1.4 1.5
/n0O 3.4 3.2
Al5O5 9.0 8.5
CI’203 3.3 3.4
MgQO 7.8 7.3
MnO 3.6 3.8
NiO 4.3 3.9
TiO5 3.0 3.4
FGSQ 1.0 2.0
/nS 3.7 3.5
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Orbital interactions

How do orbitals interact in the Hartree-Fock approximation?

Eo =Y, {alhla) + 3, (aa | bb) — (ab | ba)

Coulomb interaction

(aa || bb) = [ dridrs |¢a(r)] 7 [de(r2)|”

r12

exchange interaction

(ab| ba) = [ dridry ¢%(r1)e)(r1)=2=gp(r2)da(rs)

12
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e Label orbitals occupied (a,b,...) or virtual (7, 7,...). What is the
expression for the orbital energy?
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Self-interaction - Hartree-Fock case

e Label orbitals occupied (a,b,...) or virtual (7, 7,...). What is the
expression for the orbital energy?

A Occupied
e = (Galh|Ba) + S0 ((Gatda || Do) — (Daths || Boda))

Virtual

e = (dilhlos) + S50 ((ichi || dudn) — (Bichs || dudi))

e Sum over b is over occupied orbitals only. Therefore for the first
expression only, one of the terms will cancel when b=a:

(PaPall PaPa) = (PaPa || Pada) =0

e Therefore in the Hartree-Fock approximation an electron does not feel its
own field, since the self-interaction is cancelled by an equivalent term in
the exchange energy.
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Self-interaction in local density approximation to DFT
LSDA exchange energy
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Self-interaction in local density approximation to DFT
LSDA exchange energy

B, = [ dr e lpi(e),pi(o)

‘ Mean-field contains all the electrons I

e U (interpreted as the ‘self-exchange’ term) equals J (the ‘different
orbital’ exchange term).

Implications:

e But U and J differ by an order of magnitude in NiO. LSDA effectively
averages these quantities.

e Therefore additional potential U felt by unoccupied orbitals disappears,
and instead all the states are shoved up in energy by something like the
average of U and J.

e Local density theory lumps all these exchange interactions together and

thus dilutes the effect of self-exchange and underestimates the driving force
for the formation of a correlated state. This is the root of the difficulty of
contemporary calculations in describing strongly-correlated systems. .
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functionals (inherent in LSDA and all GGA treatments) will often lead to
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What to do about it

Problem:

The effect of self-interaction and the use of simple local exchange
functionals (inherent in LSDA and all GGA treatments) will often lead to
the wrong ground state in magnetic insulators and other strongly
correlated materials.

Possible ways to improve this:
e Use ‘corrections’ to LDA treatment (LDA-+U, SIC-LDA).
e Use unrestricted Hartree-Fock calculations.

e Use ‘hybrid functionals’ in DFT containing some fraction of the
non-local HF exchange (e.g. B3LYP)

e Use ‘exact-exchange’ DFT treatments currently being developed.

e Use the result of any of the above as a trial wave function for quantum
Monte Carlo (which is self-interaction free).
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Results for some simple properties of NiO

a« (A | Ec (eV) | E, (eV)
UHF 4.26 6.2 14.2
LSDA 4.09 10.96 0
GGA 4.22 8.35 0
B3LYP 4.22 7.8 3.9
DMC(UHF) | (4.16ish?) | 9.44(13)
DMC(B3LYP) 0.19(14) | 4.3(2)
Exp. 4.165 | 9.45(+7) | 4.0-4.3

Lattice constant, a, cohesive energy, £, and band gap, £, of NiO.

002 |||||||||||||||||||||||||||||||||||||||||||| I ||||| I ||||||||||

0.018 o e DMC

e HF

—e | DA N

0.016

0.014 —
- DMC calculations still running!
0.012 b

0.01

Expt = 4.165 A

Change in energy (Ha)
o o
o o
o o
\ \ \ \ O\.’ O\o \ \ \ \ \

39 395 4 405 41 415 42 425 43 435 44 445 45

Lattice constant (A)



Real Mott transitions

Experimental techniques

e very high pressure diamond anvil cells (— Mbar range)

e Mossbauer spectroscopy - probes spins through hyperfine fields - only
high pressure method for probing sensitive magnetic phenomena like
HS —LS transitions etc..

e synchrotron X-ray diffraction

e resistance measurements

Examples Nily, Coly, FesO3, FeO

25 30

PRESSURE (GPa)
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Things to do (maybe)

Research

e Implement calculation of many-body phase operators in CASINO QMC
code (easy!).

e Check if results of above make sense in very simple systems (like
hydrogen chain!) then repeat in simple materials like aluminium and
carbon.

e Check out the Mott transitions in e.g. Nily, Colsy, FesO3, etc. HS —LS
transition in FeO with both DFT and QMC calculations.

Things to think about

e The mathematics of Berry phases and many-body phase operators in
periodic boundary conditions..

e Clarify the connections between localization tensors, maximally localized
Wannier functions, conductivity, nearsightedness, density matrices, Boys
localization, Kohn theory, polarization etc..
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