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Linear scaling QMC
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Cubic scaling
N^7 scaling

method scaling
Hartree-Fock N3 −N4

DFT N3

QMC N3 −N4

CCSD(T) N7

Scaling improvement in QMC simply a matter of
using localized orbitals and localized basis sets.

If an electron is far enough from the centre of a localized orbital, then we
can assume it to be zero, thereby avoiding a great deal of unnecessary
calculation.
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Linear scaling QMC fallacy No. 1 - paper titles

Linear scaling quantum Monte Carlo calculations, Williamson et al. (2001).

Linear scaling quantum Monte Carlo technique with non-orthogonal
localized orbitals, Alfè and Gillan (2004).

Linear scaling for the local energy in quantum Monte Carlo, Manten and
Lüchow (2003).

• Memory requirement scales linearly.

• Time to do 1 MC move and calculate local energy once scales linearly.

• But need to do many MC moves - in fact an increasing number of them
as the system size increases if you want to keep the error bar the same.
Time taken to calculate the local energy to a given error bar thus scales as
the square of the system size, so according to all previously established
conventions, it should be called quadratic scaling quantum Monte Carlo.

Thus only Manten alludes to this in his choice of title.

”I think you know the answer to that, Mike. Because it sounds cool.”

A.J. Williamson, Leiden conference, 2004
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Linear scaling QMC fallacy No. 2
The necessity of splines

Misleading figure from Williamson paper

Fails to mention that curves marked ‘Gaussian’ and ‘Plane Wave’ (which
are basis sets) are produced with delocalized orbitals whereas his curve
marked ‘MLW’ (Maximally Localized Wannier function - a kind of orbital)
is done with localized orbitals in addition to his localized spline basis set.

In fact Gaussians have the potential to be just as effective a representation
as splines in ‘linear scaling QMC’ calculations!
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Localized orbitals with Gaussian basis sets

Good properties:

• Gaussian basis functions decay quickly

• We think we can build orbitals which are localized without cutting them
off appreciably, unlike with plane-wave (and therefore blip) calcs.

Where to get localized orbitals expanded in Gaussians?

• CRYSTAL (Oh God..)

Options

• CRYSTAL2003 will calculate orthogonal Wannier functions.. we could
use those directly.

• We could take CRYSTAL’s regular delocalized orbitals and localize them
according to a criterion of our own.
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How to produce localized orbitals

• Calculate orthogonal extended Bloch orbitals in the usual way with your
DFT program. Form appropriate linear combinations to produce orbitals
localized according to some criterion.

φm(r) =
M∑

n=1

cmnψn(r), m = 1, 2, . . . ,M

det |φm(ri)| = det |cmn| · det |ψn(ri)|

• Determinant unchanged apart from constant factor det |cmn|, therefore
total energy unchanged in QMC.

• If the transformation matrix is unitary, then the resulting orbitals remain
orthogonal. If it isn’t, then they are nonorthogonal. Whichever - the above
property of determinants is true. Therefore we can use nonorthogonal
orbitals in QMC.

• Additional freedom gained by dispensing with orthogonality can be
exploited to improve the localization of the orbitals.
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Orthogonal vs. non-orthogonal

Comparison of orthogonal (left) and non-orthogonal (right) maximally
localized orbitals for C-C σ bond in benzene C6H6. The non-orthogonal
orbitals are more localized and more transferable since the extended wiggles
in the orthogonal functions depend in detail upon the neighbouring atoms.
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Alfè/Gillan localization

• Choose some region of arbitrary shape contained within the unit cell.
Want to find the combination φ(r) =

∑M
n=1 cnψn(r) such that φ(r) is

maximally localized in this region.

• Can vary the cn to maximize the localization weight P :

P =

∫
region

|φ(r)|2 dr∫
cell
|φ(r)|2 dr =

∑
m,n c

∗
mA

region
mn cn∑

m,n c
∗
MA

cell
mncn

where

AΩ
mn =

∫

Ω

ψ∗mψn dr

Then P takes its maximum value when the cn are the components of the
eigenvector of the generalized eigenvalue equation

∑
n

Aregion
mn cn = λα

∑
n

Acell
mncn

associated with largest eigenvalue λ1, and this maximum P is equal to λ1.

[J. Phys.: Cond. Mat 16, L305 (2004)]
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Reboredo-Williamson localization

Optimized nonorthogonal localized orbitals
for linear scaling QMC calculations

Phys. Rev. B 71, 121105 (2005)

Essentially the same thing as Alfè, though less clearly explained.
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Cutting things off
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• To get any benefit from localized orbitals, need to decide on truncation
radius outside of which they are taken to be exactly zero. Then we don’t
need to do any work to calculate the orbital if electron is further away than
this.

• Then need to decide how to cut off the orbital. Can cutoff abruptly, or
can bring the orbital smoothly to zero over some truncation region by
multiplying by an appropriate function. One might initially think the latter
is more sensible.

• Very nice analysis of this in Neil’s Ph.D. thesis.
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Neil cutoff results : VMC for silane

Truncation method Total energy (a.u.) KEI (a.u.) FISQ (a.u.)
rqh −4.9550(7) 4.5159(7) 4.520(15)
rqh2 −4.9449(7) 4.5241(6) 4.521(7)
rqh3 −4.9026(7) 4.5639(7) 4.543(6)
rqhnew −5.0051(7) 4.4678(6) 4.455(6)
ndd −4.8390(14) 4.6459(14) 4.65(2)
rjn −4.9917(6) 4.4807(6) 4.492(13)
Abrupt −5.9290(3) 3.4954(4) 3.275(3)
Untruncated −5.9591(4) 3.3024(4) 3.300(3)

Table 1: VMC kinetic energy and total energy with the different truncation schemes, the

norm of the truncated functions being 94.87% of that of the original Wannier functions.

No Jastrow factor is present. The kinetic energy calculated using density-functional theory

(which, ideally, VMC should reproduce) is 3.30302 a.u. 100,000,000 configuration moves

were carried out.
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Laplacian of truncated orbitals in silane
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Neil cutoff results : DMC for silane

Truncation method Total energy (a.u.) KEI (a.u.) No. catastrophes
rqh −6.280(9) 3.317(15) 2
rqh2 −6.50(3) 3.00(6) 15
rqh3 −7.1(1) 2.2(1) 28
rqhnew −6.084(6) 3.597(13) 3
ndd −6.301(6) 3.644(7) 28
rjn −7.3(1) 1.9(1) 12
Abrupt −6.276(1) 3.602(2) 0
Untruncated −6.288(1) 3.401(2) 0

Table 2: DMC results for SiH4 calculated without a Jastrow factor, the norm of the

truncated functions being 94.87% of that of the original Wannier functions. The time

step was 0.02 a.u., the target population was 200 configurations and 220,000 statistics

accumulation moves were carried out.
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Neil cutoff conclusions

• ”Abrupt truncation gives stable DMC simulations, low variances and
energies similar to those of untruncated orbitals. However, it suffers from a
theoretical drawback: the gradients and Laplacians of the orbitals contain
Dirac delta functions, which are not sampled in QMC, thereby invalidating
the variational principles usually satisfied by the VMC and DMC energies.”

• ”Various smooth truncation schemes have been tried, but none perform
as well as abrupt truncation. All such schemes produce large, unphysical
peaks in the local kinetic energy in the truncation region.”

It is therefore recommended that localised orbitals be truncated abruptly.

• ”If the truncation radii of the orbitals are sufficiently large, the bias due
to abrupt truncation is much less than the statistical error. The bias in the
kinetic energy is given approximately by the change in the sum of the
orbital kinetic energies upon truncation, allowing an estimate to be made
of this bias; the bias in the total energy is smaller than this.”
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Conclusions and challenge

• Present situation with cutting off localized orbitals is unsatisfactory.

Exercise for the student
• Is there a better way of cutting off orbitals expanded in blips/splines.

• Are localized orbitals expanded in Gaussian basis functions likely to offer
any advantages? One can cut off a Gaussian at some radius when it has a
very small value, incurring a negligible error, so it seems likely.

• If so, what is the best way to implement such a scheme? (localize within
regions of basis set, rather than to regions of space?).

Discussion to be held on Friday!
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