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Many-Body Wave Functions

Ψ(r1σ1, r2σ2, . . . , rNσN)

ĤΨ = EΨ

Wave functions are not observables ......

but they are very “physical”!
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Electronic wave functions

Determinant of single-particle orbitals

D = Â φ1(r1)φ2(r2) · · ·φN(rN)

Simplest antisymmetric function
Already gets a lot of chemistry right

Multiply by a Jastrow factor

e
− B

rij
[1−exp(−Crij)]

Short-range or dynamical correlation from electron-electron cusps

Multi-determinant expansion

Ψ =
∑

i

ciDi

Long-range or static correlation due to near degeneracy
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Singlet pairing (BCS) - pair up-spin electrons with down-spin electrons

Ψ = Â g(|r1 − r2|)g(|r3 − r4|) · · · g(|rN−1 − rN |)

Chemist’s “geminal-power” (Hurley, Lennard-Jones and Pople, 1954)

g(r1, r2) =
∑

i

αiφ
∗
i (r1)φi(r2)

Equivalent number of determinants ∝ eλN

Backflow
Classical backflow - related to flow of fluid around a large impurity
Quantum backflow (Feynman, 1954) local current conservation for
excitations in 4He
Imaginary-time evolution argument
Replace coordinates in orbitals by “quasiparticle” coordinates

φ(ri) ⇒ φ


ri +

∑

j 6=i

η(ri, rj)[ri − rj]
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Variable parameters in wave functions

eJ3(ri,rj,rk) eJ2(ri,rj) eJ1(ri) det


φα


ri +

∑

j 6=i

η(ri, rj)[ri − rj]







importance →
Parameterise: φα, J1 and J2, η and J3

We don’t have J3 yet
We also have multi-dets and some pairing functions

Our forms for J1, J2, η appear to be rather general
φα are the most important objects ⇒ shouldn’t we optimise these as well?

Atoms: we are trying

φnlm(r, θ, φ) = rlρnl(r)Ylm(θ, φ)

ρnl(r) = ρHF
nl (r) + ∆ρnl(r)

I am quite optimistic about this!
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Variable parameters in orbitals

How do we parameterise orbitals in molecules and solids?

N orbitals expanded in O(N) basis functions ⇒ O(N2) parameters
Wannier functions?

Filippi and Fahy parameterised orbitals in terms of the potential from
which they were generated ⇒ O(N) variable parameters. Is this sufficient?

Perhaps include unoccupied orbitals φ̄β within an energy window ∆E

φ′α = φα + cαβφ̄β

Number of unoccupied orbitals in window ∝ N ⇒ O(N2) parameters cαβ

Perhaps vary linear coefficients in basis, φα(r) =
∑

i c
α
i bi(r)?

We need to think more deeply about how to parameterise orbitals
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Helium 4 (4He)

Phase diagram of 4He

Ground state of 4He: Bosons ⇒ Ψ0 is nodeless

Ψ0 =
∏

i<j

e−u(|ri−rj|) Pair product form

First VMC calculations - McMillan (1965). Describes solid and fluid
Backflow important
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Feynman’s excited state wave functions:

N∑

i=1

e−ik.ri Ψ0

N∑

i=1

e−ik.ri


1 + α

N∑

j=1

(ri − rj).k
|ri − rj|2


Ψ0 With backflow
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Helium 3 (3He)

Phase diagram of 3He

Ground state of 3He: Fermions ⇒ use Slater-Jastrow with plane waves:

eJ

∣∣∣∣∣∣∣∣

exp(ik1 · r1) . . . exp(ik1 · rN)
exp(ik2 · r1) . . . exp(ik2 · rN)

... ... ...
exp(ikN · r1) . . . exp(ikN · rN)

∣∣∣∣∣∣∣∣

Three-body Jastrow and backflow are important
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Helium 3 (3He)

QMC results for 3He are not completely satisfactory

(1) Eexp ' −2.5 K, error in optimised backflow nodes estimated to be
∼ 0.25 K (Ceperley et al.)
(2) spin susceptibility factor of 2 too small because the wave function for
the polarised system is “simpler”

Experimentally - below ∼ 1 mK get transition to superfluid of atoms with
p-wave pairing - theory similar to BCS

Bouchaud and Lhuillier obtained good energies in QMC with p-wave
pairing and no backflow! But these calculations are wrong!!
Energy of pairing of order transition temperature?
Maybe try backflow-pairing, but should not be too optimistic
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Two-component plasma/Excitonic insulator/Wigner crystal

Antisymmetrised Geminal Power (AGP) “parent” wave function

g(re, rh) =
∑

n

anu∗n(re) vn(rh)

Two-component plasma

un = vn = eiknr an 6= 0 for N plane waves

Excitonic insulator

un = vn = eiknr an 6= 0 for > N plane waves

Wigner crystal

un = fe(re −Rn)

vn = fh(rh −Rn)
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Electron-hole systems

Phase diagram of electron-hole bilayer from de Palo et al. 2002

Try the following pairing function?

g(re, rh) =
∑

n

aneiGn.(re−rh) + φ(re − rh) +
∑

i

fe(re −Ri)fh(rh −Ri)

Better than adding separate determinants?
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A positron in an electron gas

Positron is antiparticle of electron
Can annihilate with electron to give two γ rays
Strong electron-positron pairing attraction

Use different pairing functions for each electronic state:

∣∣∣∣∣∣∣∣

ψ1(r1 − rp) . . . ψ1(rN − rp)
ψ2(r1 − rp) . . . ψ2(rN − rp)

... ... ...
ψN(r1 − rp) . . . ψN(rN − rp)

∣∣∣∣∣∣∣∣

Pickard, Drummond, and Needs
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BCS-BEC crossover in ultracold Fermi gases

Bardeen-Cooper-Schrieffer superfluid ↔ molecular Bose-Einstein Condensate

At the crossover get “universal behaviour” independent of details of
interaction (unitary limit) - Very fashionable!
Many things to vary - can tune interactions by varying applied B field, etc.

Plenty of work for QMC!
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Conclusions

• Current understanding of many-body wave functions revolves around four
basic ideas (determinants/permanents, Jastrow factors, pairing, backflow)

• Use the four ideas in a physically motivated combination

• We need to think more deeply about how to parameterise orbitals

• Recently we have been concentrating on improving CASINO and making
better wave functions - now we have to prove it is useful!
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