Wave functions in QMC

Richard Needs

Theory of Condensed Matter Group Cavendish Laboratory University of Cambridge

Many-Body Wave Functions

$$\Psi(\mathbf{r}_1\sigma_1,\mathbf{r}_2\sigma_2,\ldots,\mathbf{r}_N\sigma_N)$$

 $\hat{H}\Psi=E\Psi$

Wave functions are not observables but they are very "physical"!

Electronic wave functions

Determinant of single-particle orbitals

 $D = \hat{A} \phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) \cdots \phi_N(\mathbf{r}_N)$

Simplest antisymmetric function Already gets a lot of chemistry right

Multiply by a Jastrow factor

$$e^{-\frac{B}{r_{ij}}\left[1-\exp\left(-Cr_{ij}\right)\right]}$$

Short-range or dynamical correlation from electron-electron cusps

Multi-determinant expansion

$$\Psi = \sum_{i} c_i D_i$$

Long-range or static correlation due to near degeneracy

Singlet pairing (BCS) - pair up-spin electrons with down-spin electrons

$$\Psi = \hat{A} g(|\mathbf{r}_1 - \mathbf{r}_2|)g(|\mathbf{r}_3 - \mathbf{r}_4|) \cdots g(|\mathbf{r}_{N-1} - \mathbf{r}_N|)$$

Chemist's "geminal-power" (Hurley, Lennard-Jones and Pople, 1954)

$$g(\mathbf{r}_1, \mathbf{r}_2) = \sum_i \alpha_i \phi_i^*(\mathbf{r}_1) \phi_i(\mathbf{r}_2)$$

Equivalent number of determinants $\propto e^{\lambda N}$

Backflow

Classical backflow - related to flow of fluid around a large impurity Quantum backflow (Feynman, 1954) local current conservation for excitations in $^4{\rm He}$

Imaginary-time evolution argument

Replace coordinates in orbitals by "quasiparticle" coordinates

$$\phi(\mathbf{r}_i) \Rightarrow \phi\left(\mathbf{r}_i + \sum_{j \neq i} \eta(\mathbf{r}_i, \mathbf{r}_j)[\mathbf{r}_i - \mathbf{r}_j]\right)$$

Variable parameters in wave functions

$$e^{J_3(\mathbf{r}_i,\mathbf{r}_j,\mathbf{r}_k)} e^{J_2(\mathbf{r}_i,\mathbf{r}_j)} e^{J_1(\mathbf{r}_i)} \det \left[\phi_\alpha \left(\mathbf{r}_i + \sum_{j \neq i} \eta(\mathbf{r}_i,\mathbf{r}_j) [\mathbf{r}_i - \mathbf{r}_j] \right) \right]$$

Parameterise: ϕ_{α} , J_1 and J_2 , η and J_3

We don't have $J_3 yet$ We also have multi-dets and some pairing functions

Our forms for J_1 , J_2 , η appear to be rather general ϕ_{α} are the most important objects \Rightarrow shouldn't we optimise these as well?

Atoms: we are trying

$$\phi_{nlm}(r,\theta,\phi) = r^{l}\rho_{nl}(r)Y_{lm}(\theta,\phi)$$
$$\rho_{nl}(r) = \rho_{nl}^{\rm HF}(r) + \Delta\rho_{nl}(r)$$

I am quite optimistic about this!

Variable parameters in orbitals

How do we parameterise orbitals in molecules and solids?

N orbitals expanded in $\mathcal{O}(N)$ basis functions $\Rightarrow \mathcal{O}(N^2)$ parameters Wannier functions?

Filippi and Fahy parameterised orbitals in terms of the potential from which they were generated $\Rightarrow O(N)$ variable parameters. Is this sufficient?

Perhaps include unoccupied orbitals $\overline{\phi}_{\beta}$ within an energy window ΔE

$$\phi_{\alpha}' = \phi_{\alpha} + c_{\alpha\beta}\bar{\phi}_{\beta}$$

Number of unoccupied orbitals in window $\propto N \Rightarrow \mathcal{O}(N^2)$ parameters $c_{\alpha\beta}$ Perhaps vary linear coefficients in basis, $\phi_{\alpha}(\mathbf{r}) = \sum_{i} c_i^{\alpha} b_i(\mathbf{r})$?

We need to think more deeply about how to parameterise orbitals

Helium 4 (⁴He)

Phase diagram of ⁴He

Ground state of ⁴He: Bosons $\Rightarrow \Psi_0$ is nodeless

 $\Psi_0 = \prod_{i < j} e^{-u(|\mathbf{r}_i - \mathbf{r}_j|)} \qquad \text{Pair product form}$

First VMC calculations - McMillan (1965). Describes solid *and* fluid Backflow important

Feynman's excited state wave functions:

Helium 3 (³He)

Phase diagram of ³He

Ground state of ³He: Fermions \Rightarrow use Slater-Jastrow with plane waves:

$$e^{J} \begin{vmatrix} \exp(i\mathbf{k}_{1} \cdot \mathbf{r}_{1}) & \dots & \exp(i\mathbf{k}_{1} \cdot \mathbf{r}_{N}) \\ \exp(i\mathbf{k}_{2} \cdot \mathbf{r}_{1}) & \dots & \exp(i\mathbf{k}_{2} \cdot \mathbf{r}_{N}) \\ \vdots & \vdots & \vdots \\ \exp(i\mathbf{k}_{N} \cdot \mathbf{r}_{1}) & \dots & \exp(i\mathbf{k}_{N} \cdot \mathbf{r}_{N}) \end{vmatrix}$$

Three-body Jastrow and backflow are important

Helium 3 (³He)

QMC results for ³He are not completely satisfactory

(1) $E_{exp} \simeq -2.5$ K, error in optimised backflow nodes estimated to be ~ 0.25 K (Ceperley *et al.*) (2) spin susceptibility factor of 2 too small because the wave function for the polarised system is "simpler"

Experimentally - below $\sim 1~{\rm mK}$ get transition to superfluid of atoms with $p{\rm -wave}$ pairing - theory similar to BCS

Bouchaud and Lhuillier obtained good energies in QMC with *p*-wave pairing and no backflow! But these calculations are wrong!! Energy of pairing of order transition temperature? Maybe try backflow-pairing, but should not be too optimistic

Two-component plasma/Excitonic insulator/Wigner crystal

Antisymmetrised Geminal Power (AGP) "parent" wave function

$$g(\mathbf{r}_e, \mathbf{r}_h) = \sum_n a_n u_n^*(\mathbf{r}_e) v_n(\mathbf{r}_h)$$

Two-component plasma

 $u_n = v_n = e^{i\mathbf{k}_n\mathbf{r}}$ $a_n \neq 0$ for N plane waves

Excitonic insulator

 $u_n = v_n = e^{i\mathbf{k}_n\mathbf{r}}$ $a_n \neq 0$ for > N plane waves

Wigner crystal

$$u_n = f_e(\mathbf{r}_e - \mathbf{R}_n)$$

 $v_n = f_h(\mathbf{r}_h - \mathbf{R}_n)$

Electron-hole systems

Phase diagram of electron-hole bilayer from de Palo et al. 2002

Try the following pairing function?

$$g(\mathbf{r}_e, \mathbf{r}_h) = \sum_n a_n e^{i\mathbf{G}_n \cdot (\mathbf{r}_e - \mathbf{r}_h)} + \phi(\mathbf{r}_e - \mathbf{r}_h) + \sum_i f_e(\mathbf{r}_e - \mathbf{R}_i) f_h(\mathbf{r}_h - \mathbf{R}_i)$$

Better than adding separate determinants?

A positron in an electron gas

Positron is antiparticle of electron Can annihilate with electron to give two γ rays Strong electron-positron pairing attraction

Use different pairing functions for each electronic state:

$\psi_1({f r}_1-{f r}_p)$		$\psi_1({f r}_N-{f r}_p)$
$\psi_2({f r}_1-{f r}_p)$		$\psi_2({f r}_N-{f r}_p)$
÷	:	÷
$\psi_N({f r}_1-{f r}_p)$		$\psi_N({f r}_N-{f r}_p)$

Pickard, Drummond, and Needs

BCS-BEC crossover in ultracold Fermi gases

Bardeen-Cooper-Schrieffer superfluid \leftrightarrow molecular Bose-Einstein Condensate

At the crossover get "universal behaviour" independent of details of interaction ($unitary \ limit$) - Very fashionable! Many things to vary - can tune interactions by varying applied B field, etc.

Plenty of work for QMC!

Conclusions

• Current understanding of many-body wave functions revolves around four basic ideas (determinants/permanents, Jastrow factors, pairing, backflow)

- Use the four ideas in a physically motivated combination
- We need to think more deeply about how to parameterise orbitals
- Recently we have been concentrating on improving CASINO and making better wave functions now we have to prove it is useful!