Calculating the dielectric constant within QMC

Richard Needs

Theory of Condensed Matter Group Cavendish Laboratory University of Cambridge

The macroscopic polarisation

The macroscopic polarisation \mathbf{P} of a finite system is

$$\mathbf{P} = \frac{1}{\Omega} \int_{\Omega} \mathcal{P}(\mathbf{r}) \, d^3 r = \frac{1}{\Omega} \int_{\Omega} \mathbf{r} \, \rho(\mathbf{r}) \, d^3 r$$

 $\mathcal{P}(\mathbf{r}) \equiv$ polarisation density $\rho(\mathbf{r}) \equiv$ total charge density

Within periodic boundary conditions it is more difficult to define ${\bf P}$ Choosing different unit cells \to different values for the integral

Within the Berry phase formalism of King-Smith, Vanderbilt, and Resta:

$$P[\Psi] = -\frac{1}{\Omega} \frac{L}{2\pi} \operatorname{Im} \ln z$$
$$z = \langle \Psi \left| e^{i \frac{2\pi}{L} \sum_{i}^{N} x_{i}} \right| \Psi \rangle$$

 $L \equiv$ Length of simulation cell

The static dielectric constant

Static dielectric constant

$$\epsilon_0 = 1 + 4\pi \frac{\partial P}{\partial \mathcal{E}}$$
$$= 1 + 4\pi \chi$$

 $\chi \equiv$ polarisability The differential with respect to applied electric field \mathcal{E}

Can use DFT to calculate \ensuremath{P}

Can use Density Functional Perturbation Theory (DFPT) to calculate ϵ_0

DFT is normally quite accurate for P but less accurate for ϵ_0 Typically off by $\sim 20\%$, but sometimes worse

The static dielectric constant in QMC

Umari, Williamson, Galli, and Marzari (using CASINO!)

Finite applied electric field \mathcal{E} : consider electric enthalpy F

 $F = \langle \Psi | \hat{H} | \Psi \rangle - \Omega P[\Psi] \mathcal{E}$

Minimising with respect to $|\Psi
angle$

$$rac{\partial F}{\partial \langle \Psi |} = \lambda |\Psi
angle$$

find that $|\Psi
angle$ is the ground state of an effective Hamiltonian

$$\hat{H}_{\text{eff}} = \hat{H} + \mathcal{E} \frac{L}{2\pi} \operatorname{Im} \left[\frac{e^{i2\pi/L \sum_{i} x_{i}}}{\langle \Psi | e^{i2\pi/L \sum_{i} x_{i}} | \Psi \rangle} \right]$$

 \hat{H}_{eff} is periodic, local, real, and Hermitian, but depends on Ψ \rightarrow iterate to self-consistency

QMC calculations of Umari *et al.*

1D chain of H_2 molecules subject to periodic boundary conditions Local H pseudopotential

Slater determinant of PBE-GGA orbitals + (bad) Jastrow factor

Simulation cells with up to 22 H_2 molecules

Electric field of 0.001 a.u.

Polarisability by finite difference method

Method	χ (a.u.)	Scaling cost
PBE-GGA	144.5	$N-N^3$
CCD	47.6	$N^5 - N^6$
CCSD	48.0	N^6
CCSD(T)	50.6	N^7
MP2	58.0	N^5
MP3	54.3	N^6
MP4	53.6	N^7
DMC	53.4(11)	$N-N^3$

Table 1: Linear polarisability per H_2 unit for a periodic linear chain of H_2 dimers calculated using several methods, together with their associated scaling costs. The quantum chemistry results are from PRA **52** 1039 (1995).

Kohn formulation

Really interested in the case of a vanishingly small electric field

Kohn, Phys. Rev. **105**, 509 (1957) Kohn, Phys. Rev. **110**, 857 (1958)

$$\frac{1}{\epsilon_0} = \lim_{\substack{\mathbf{K}, \mathbf{K}' \to 0 \\ \mathbf{K} \neq \mathbf{K}'}} \frac{\langle \Psi_{0\mathbf{K}'} | \rho_{\mathbf{K} - \mathbf{K}'} | \Psi_{0\mathbf{K}} \rangle}{\langle \Psi_{0\mathbf{K}'} | \Psi_{0\mathbf{K}} \rangle}$$

where $\rho_{\mathbf{K}}(\mathbf{r}) = \sum_{i=1}^{N} e^{i\mathbf{K} \cdot \mathbf{r}}$

But.....what does the limit mean?

Conclusions

- Work of Umari *et al.* is very nice
- Can anybody understand the Kohn equation?
- Nice to try the Kohn equation (providing we can understand it!)