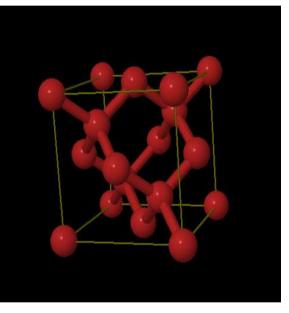
The diamond Equation of State Andrea Ma 30th July 2005

Contents


- Introduction
- Diamond
- Equation of state
- Experiments difficulties in experiments
- DFT results
- VMC results
- Conclusions / Further work

Introduction

- People involved Ryo, Neil, Mike, Richard
- Aims determine the lattice constant, bulk modulus and the pressure derivative of the bulk modulus of diamond
- The study will be carried out up to very high pressures (beyond experimental range).

Industrial uses of diamond

Property		Application	
Thermal	Highest known thermal conductivity (4-20W/cm/K)	Heat spreader	
Chemical	Unreactive below 300°C		
Optical	Transparent	Wear-resistant optical windows	
Mechanical	Hardest known material	Drills, diamond anvil cells	
Electronic	Electrical insulator	Insulator in high voltage circuits, high speed switch	
Acoustic	Highest known sonic velocity	High performance surface acoustic wave devices	

Equation of state (I)

Useful in geo, planetary, solar and stellar physics

- Data consisting of pressure, temperature and volume are parameterized to a functional form. A correct form helps us predict the high-pressure properties of solids
- For E(V), parameters are V_0 , B_0 , B_0' , E_{offset}
- Many different forms for isothermal data Vinet, Birch, Murnaghan, B-M, Dodson, Taylor, Holzapfel, Kumari-Dass, Parsafar-Mason...
- No EoS approaches the correct theoretical values at extreme compressions

Equation of state (II)

Three forms:

Derivative form (B-M, PM, Vinet)

 $P = -\partial E / \partial V$

Volume-integral form (Dodson)

$$P = -\int_{V_0}^V B(V)/V \, dV$$

Pressure-integral form (Murnaghan and KD)

$$\frac{V}{V_0} = \exp\left[-\int_0^P \frac{1}{B(P)} dP\right]$$

Birch-Murnaghan EoS (1944)

$$E(V) = \frac{-9}{16} B_0 \left[\left(4 - B_0' \right) \frac{V_0^3}{V^2} - \left(14 - 3 B_0' \right) \frac{V_0^{7/3}}{V^{4/3}} + \left(16 - 3 B_0' \right) \frac{V_0^{5/3}}{V^{2/3}} \right] + E_0$$

- Derived from the Taylor series expansion of the bulk modulus $B = B_0 + B_0' P$
- Assumes the underlying interatomic potential as a series in $1/r^{2n}$
- 2^{nd} order truncated form gives the Birch EoS (accurate up to V/V₀=0.4)

The Vinet EoS (1987)

$E(V) = \frac{-4B_0V_0}{(B_0'-1)^2} \left[1 - \frac{3}{2} (B_0'-1) \left(1 - \left(\frac{V}{V_0}\right)^{1/3} \right) \right] \times \exp\left[\frac{3}{2} (B_0'-1) \left(1 - \left(\frac{V}{V_0}\right)^{1/3} \right) \right] + E_0$

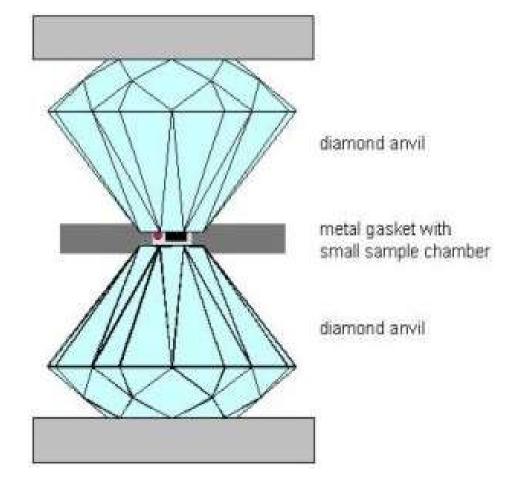
- Assumed the interatomic interaction in solids can be expressed as $A(1+r)\exp(-r)$
- From expt data, $r=3/2[B_0'-1][(V/V_0)^{1/3}-1]$
- Accurate up to about $V/V_0 = 0.2-0.3$ (or 10TPa)
- Total energy tends to a constant in extreme compression instead of infinity

Other equations of state

Murnaghan (1944)

- Truncated Taylor-series. Good for small compressions, therefore widely used to analyze experimental data, accurate up to V/V_o=0.7
- Extensions:
 - Dodson (1987) assumes
 - KD (1990) higher-order terms are taken into account, assuming $B_0^{(n+1)}/B_0^{(n)} = -B_0^{''}$ for n > 1
- Holzapfel (1996)
 - Designed for extreme compression.

Which one to use?


- For strains less than 30% [Jeanloz (1988), Cohen et al (2000)], it doesn't really matter which EoS you use.
- Parameters are better determined with the Vinet equation [Cohen et al (2000)]
- For large strains, the Vinet equation is best.
- At extreme compressions, the Holzapfel equation may be required.

Experiments

- LAC, DAC, shock compression
- Techniques include X-ray diffraction, Raman scattering, Brillouin scattering, ultrasonic.
- hydrostatic pressure up to 140 GPa (2003)
- High temperatures laser heating in DAC (max pressure 200GPa, 4000K)

Diamond Anvil Cells

Difficulties in experiments

- Sample chamber becomes very thin (<10µm)
- Separation of diamond signal from signal of diamond anvils
- Pressure above 140GPa leads to breakage of diamond anvils
- Calibration of the pressure (underestimates pressure by 11% in ruby calibration?)

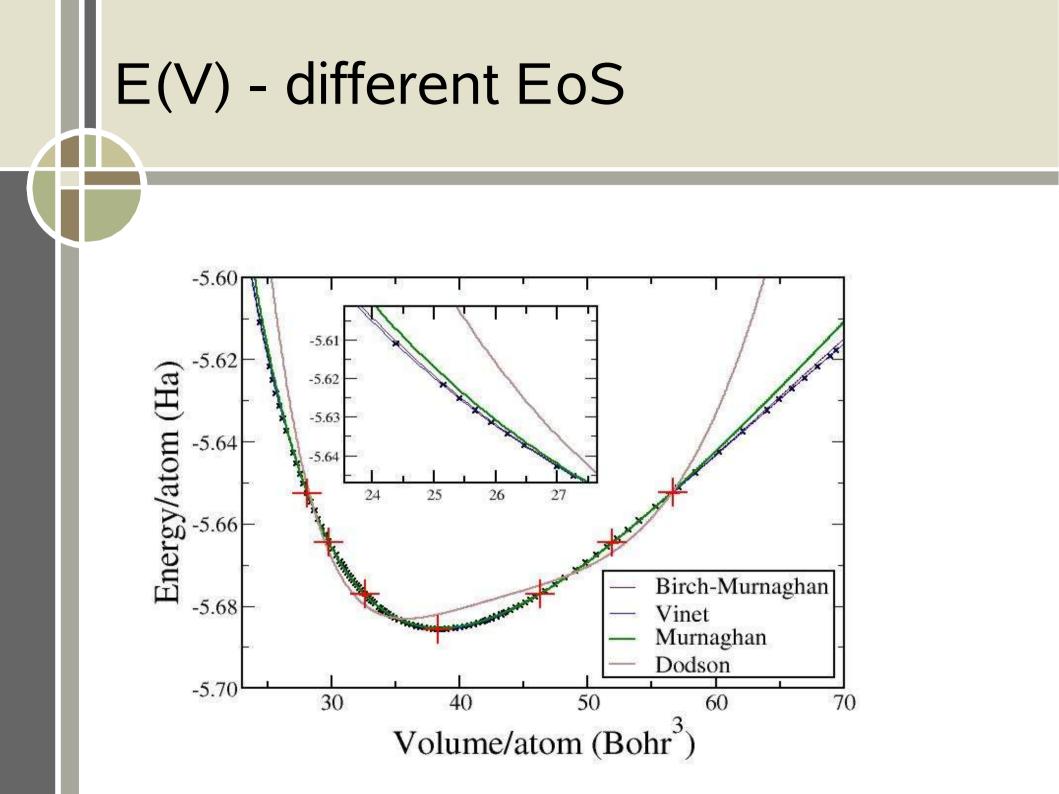
Pressure derivative of the bulk modulus

Method	B ₀ '
Ultrasonic, up to 0.2GPa, McSkimin and Andreatch (1972)	4.0(5)
X-ray diffraction and Raman scattering, up to 140GPa, F. Occelli, P. Loubeyre, and R. LeToullec (2003)	3.0(1)
LDA Fahy et al, Chelikowsky et al, Pavone et al, Kunc et al, Crain et al	3.5, 3.54, 3.63(3), 3.24, 4.22
GGA Kunc et al, Ziambaras et al	3.67(3), 3.71, 3.72, 3.70, 3.97

Pressures

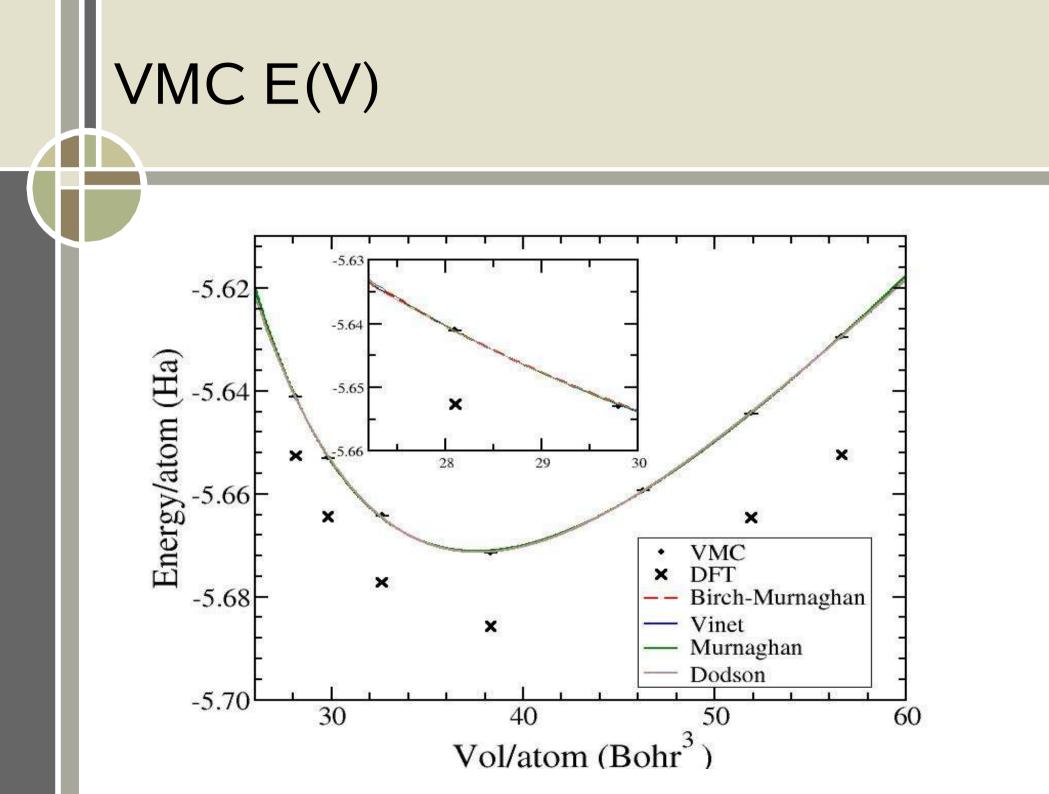
0.5	Ра	Atmospheric pressure on Pluto
-----	----	-------------------------------

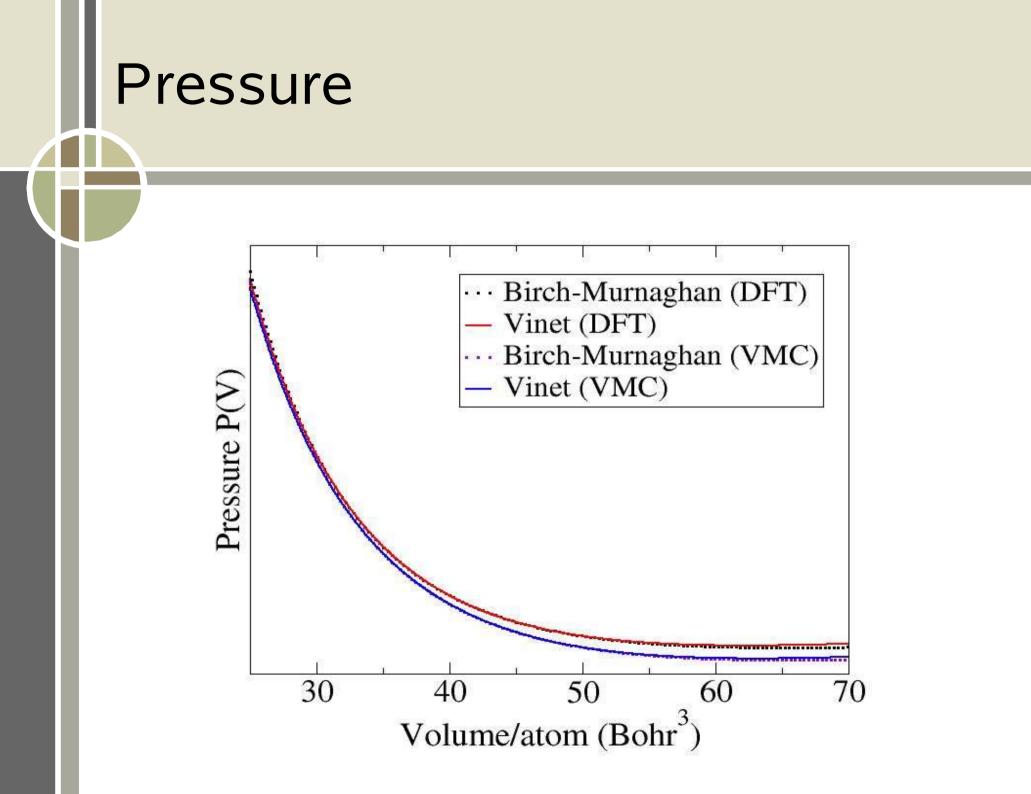

- 1 KPa Atmospheric pressure on Mars
- **101** KPa Atmospheric pressure on Earth at sea level
- 100 MPa Pressure at the bottom of Mariana Trench, 10km below ocean surface
- 2 GPa Ultrasonic measurement by McSkimin
- 10 GPa Diamond forms
- 15 GPa Large Anvil Cells
- 140 GPa X-ray, Raman scattering by Occelli with Diamond Anvil Cells
- 240 GPa Highest pressure in present QMC study
- **330** GPa Pressure at mantle-core boundary
- 450 GPa Highest pressure in future QMC study


DFT calculations

Code: CASTEP (plane waves)

- GGA (PBE)
- Energy cutoff 100 Ha (converged to 5x10⁻⁵ Ha/atom)
- 32 kpts (converged to within 1x10⁻⁵ Ha/atom)
- Calculate E(V) for volumes up to 440GPa
- Choose lattice points for QMC calculations


Energy vs volume



QMC calculations

- 4x4x4 cell, blip basis set, calculations at 7 lattice coordinates
- Pressure up to 240GPa
- Tested convergence of basis set
- Jastrow factor optimization
- VMC calculation

EoS parameters (DFT)

	Vinet	B-M	Murnag- han	Dodson	DFT GGA (from lit.)	Expt
Lattice constant (Å)	3.573	3.573	3.573	3.488	3.55, 3.568, 3.565	3.567, 3.5668
Bulk Modulus (Mbar)	4.31	4.26	4.09	4.66	4.33(2), 4.32, 4.22, 4.36, 4.32, 4.35	4.42, 4.43, 4.52, 4.448(8), 4.46(1), 4.45, 4.69 (at 0K)
Pressure deriv. of the bulk modulus	3.70	3.73	3.79	11.80	3.67(3), 3.71, 3.72, 3.70	4.0(5), 3.0(1)

EoS parameters (VMC)

	Vinet	B-M	Murnaghan	VMC (Murnaghan) [Fahy et al]	Expt
Lattice constant (Å)	3.547	3.546	3.545	3.54(3)	3.567, 3.5668
Bulk Modulus (Mbar)	4.83	4.81	4.64	4.2(5)	4.42, 4.43, 4.52, 4.448(8), 4.46(1), 4.45, 4.69 (at 0K)
Pressure deriv. of the bulk modulus	3.43	3.47	3.63	-	4.0(5), 3.0(1)

Conclusions and Future Work

- Investigated different forms of EOS
- Performed DFT (GGA) and VMC calculations on diamond to determine a, B₀ and B₀'
- DMC calculations
- Higher pressure regime (up to 450 GPa)
- Phonon frequencies (using frozen phonon method)