Studying the phases of the electron-hole system

1. How to use QMC to solve a problem.

1. How to use QMC to solve a problem.

Choosing the wave function

For each problem:

* Take known solutions & limits into account

* Combine one-particle orbitals into a compact form which can be optimized easily (Slater-Jastrow, etc.)

* Take all symmetries into account

1. How to use QMC to solve a problem.

Choosing the wave function

For each problem:

* Take known solutions & limits into account

* Combine one-particle orbitals into a compact form which can be optimized easily (Slater-Jastrow, etc.)

* Take all symmetries into account

2. The electron-hole system

Known limits:

- * V=0 : two-component fluid plane-wave orbitals
- * KE=0 : Wigner-Crystal localized orbitals
- * Mean-field : electron-hole pairing pairing orbitals

2. The electron-hole system

Traditional approach:

- * Study the three limits separately using QMC
- * The dominant phase is the one with the lowest energy

What's wrong?

2. The electron-hole system

Traditional approach:

* Study the three limits separately using QMC

* The dominant phase is the one with the lowest energy

What's wrong?

We are splitting **one** problem into **three**...

2. The electron-hole system

* Is there anything actually wrong with that?

* What is the correct way of proceeding, then?

3. The phase-by-phase approach

* VMC energies are totally determined by the trial wave function, so VMC energies should correspond to the phases

HF wfn, 2CP phase

 \times

×

Pablo López Ríos

3. The phase-by-phase approach

* VMC energies are totally determined by the trial wave function, so VMC energies should correspond to the phases

HF wfn, pairing phase

3. The phase-by-phase approach

* But can a Jastrow factor mix up the phases?

SJ wfn, 2CP phase

+

+

×

×

Pablo López Ríos

3. The phase-by-phase approach

* But can a Jastrow factor mix up the phases?

Pablo López Ríos

3. The phase-by-phase approach

* DMC is equivalent to VMC with the best possible Jastrow. Only the nodes are unaffected (fixed-node approximation).

* Assuming that the nodes are capable of preserving the phase described by the wave function, DMC results can still be correctly assigned to each of the phases.

3. The phase-by-phase approach

* But what would backflow do?

ASINO 2D plot	
Nodes	
Particles (1)	+
Particles (2)	+
Particles (3)	\times
Particles (4)	\times

SJ wfn, 2CP phase

3. The phase-by-phase approach

* But what would backflow do?

ASINO 2D plot	
Nodes	
Particles (1)	+
Particles (2)	+
Particles (3)	\times
Particles (4)	\times

BF wfn, 2CP phase

3. The phase-by-phase approach

* But what would backflow do?

Pablo López Ríos

3. The phase-by-phase approach

Another problem:

- * The mean field solution says all electrons should be paired with all holes, independently of their spin.
- * However, one typically uses the following wave function:

$$\Psi_{S} = D_{e^{\uparrow}h^{\downarrow}} D_{e^{\downarrow}h^{\uparrow}}$$

which is asymmetric with respect to the interchange of, e.g., up and down-spin holes. So this is not the most general wave function.

4. Correct approach #1

Use a wave function with the following determinant part:

$$\Psi_{S} = c_{P} \left[D_{e\uparrow h\downarrow}^{P} D_{e\downarrow h\uparrow}^{P} + D_{e\uparrow h\uparrow}^{P} D_{e\downarrow h\downarrow}^{P} \right] + c_{F} D_{e\uparrow}^{F} D_{e\downarrow}^{F} D_{h\downarrow}^{F} D_{h\downarrow}^{F} + c_{C} D_{e\uparrow}^{C} D_{e\downarrow}^{C} D_{h\uparrow}^{C} D_{h\downarrow}^{C} \right]$$

This form respects the required symmetries, and includes all known limits of the system.

The dominance of one phase over the others must be studied using density matrices.

4. Correct approach #1

Let's ignore the WC limit,

$$\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{e^{\uparrow}h^{\uparrow}}^{P} D_{e^{\downarrow}h^{\downarrow}}^{P} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$$

and look at various plots of the above wave function...

4. Correct approach #1

Let's ignore the WC limit,

$$\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{e^{\uparrow}}^{P} D_{e^{\downarrow}h^{\downarrow}}^{P} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$$

and look at various plots of the above wave function...

...without the symmetrizing pairing determinant.

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

Nodes	
Particles (1)	+
Particles (2)	+
Particles (3)	×
Particles (4)	×

SJ wfn,
$$c_{F}/c_{p} = 0$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} D_{e^{\downarrow}h^{\downarrow}}^{P} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes	
Particles	(1)	+
Particles	(2)	+
Particles	(3)	\times
Particles	(4)	\sim

SJ wfn,
$$c_F/c_P = -1$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes	
Particles	(1)	+
Particles	(2)	+
Particles	(3)	\sim
Particles	(4)	×

SJ wfn,
$$c_F/c_p = -10$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{e^{\downarrow}h^{\downarrow}}^{P} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

	No	odes	
Partic	cles	(1)	
		(~)	

Particles	(2)	
Particles	(3)	
Particles	(4)	

SJ wfn,
$$c_F/c_P = -20$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h\downarrow}^{P} D_{e\downarrow h\uparrow}^{P} + D_{a\downarrow}^{P} \right] + c_{F} D_{e\uparrow}^{F} D_{e\downarrow}^{F} D_{h\uparrow}^{F} D_{h\downarrow}^{F}$

- Nodes Particles (1) +
- Particles (2) + Particles (3) ×
- Particles (4) ×

SJ wfn,
$$c_F/c_P = -50$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes	
Particles	(1)	+
Particles	(2)	+
Particles	(3)	\sim
Particles	(4)	×

SJ wfn,
$$c_F/c_P = -100$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes	-
Particles	(1)	+
Particles	(2)	+
Particles	(3)	\sim
Particles	(4)	×

SJ wfn,
$$c_{F}/c_{p} = Infinity$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes	-
articles	(1)	+
articles	(2)	+
articles	(3)	\times
Particles	(4)	×

SJ wfn,
$$c_F / c_P = 0$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes
articles	(1)
	(0)

Particles	(2)	
Particles	(3)	\rightarrow
Particles	(4)	- 5

SJ wfn,
$$c_F/c_P = 1$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

SJ wfn,
$$c_F/c_P = 10$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

CASINO	2D	plot
		-

Nodes Particles (1)

×

- + Particles (2) + ×
- Particles (3)
- Particles (4)

SJ wfn,
$$c_F/c_P = 20$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

CASINO 2D plot

Nodes Particles (1) + Particles (2) + Particles (3) × Particles (4) ×

SJ wfn, $c_F / c_P = 30$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes	
Particles	(1)	+
Particles	(2)	- +
Particles	(3)	\rightarrow
Particles	(4)	\rightarrow

SJ wfn,
$$c_F/c_P = 40$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

ASINO:	2D	plot
	1	lodes

Г	t	i	cle	es	(1)
					10	•

articies	(2)	
articles	(3)	

Particles (4)

SJ wfn,
$$c_F/c_P = 50$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h\downarrow}^{P} D_{e^{\downarrow}h\uparrow}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h\downarrow} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h\uparrow}^{F} D_{h\downarrow}^{F}$

No	odes	
Particles	(1)	+
Particles	(2)	+
Particles	(3)	\sim
Particles	(4)	×

SJ wfn,
$$c_F/c_P = 80$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} D_{e^{\downarrow}h^{\downarrow}}^{P} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

No	odes	
Particles	(1)	+
Particles	(2)	+
Particles	(3)	×
Particles	(4)	×

SJ wfn,
$$c_F/c_P = 100$$

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{a^{\uparrow}}^{P} P_{\downarrow h^{\downarrow}} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

* Positive ratios seem wrong. Solution: use negative ratios here.

- * Problem: if we swap around up/down spin holes, the relative sign of the determinants changes, but the coeffs don't.
- * Hence some configurations are going to have this problem. VarMin won't like this. Need symmetrizing determinant.
- * Such term also describes biexcitons, which should be taken into account.

4. Correct approach #1

$$\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h\downarrow}^{P} D_{e\downarrow h\uparrow}^{P} + D_{e^{\uparrow}h\uparrow}^{P} D_{e\downarrow h\downarrow}^{P} \right] + c_{F} D_{e\uparrow}^{F} D_{e\downarrow}^{F} D_{h\uparrow}^{F} D_{h\downarrow}^{F}$$

Even with that term, there are more problems:

- * Pairing alone gives lower energy and larger variance than plane waves. Hence plane waves are (unphysically?) favoured over pairing by VarMin.
- * Parametrization of pairing orbitals seems important. Might solve the issue to use gaussians rather than exp(-r/Rex).

4. Correct approach #1

$\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{e^{\uparrow}h^{\uparrow}}^{P} D_{e^{\downarrow}h^{\downarrow}}^{P} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

Gaussians fit to exp(-r/Rex)

Free gaussians

4. Correct approach #1

 $\Psi_{S} = c_{P} \left[D_{e^{\uparrow}h^{\downarrow}}^{P} D_{e^{\downarrow}h^{\uparrow}}^{P} + D_{e^{\uparrow}h^{\uparrow}}^{P} D_{e^{\downarrow}h^{\downarrow}}^{P} \right] + c_{F} D_{e^{\uparrow}}^{F} D_{e^{\downarrow}}^{F} D_{h^{\uparrow}}^{F} D_{h^{\downarrow}}^{F}$

Problems in approach #1:

- * Determinant coeffs need careful optimization if using VarMin. Would benefit from energy optimization?
- * Choice of parametrization important.

4. Correct approach #2

$$\Psi_{S} = D_{e^{\uparrow}h^{\downarrow}}^{G} D_{e^{\downarrow}h^{\uparrow}}^{G} + D_{e^{\uparrow}h^{\uparrow}}^{G} D_{e^{\downarrow}h^{\downarrow}}^{G}$$

where G stands for "geminal".

Geminal orbitals:

$$\phi_G(\boldsymbol{e}_i, \boldsymbol{h}_j) = \sum_{\alpha, \beta=1}^n c_{\alpha\beta} f_\alpha(\boldsymbol{e}_i) f_\beta(\boldsymbol{h}_j)$$

4. Correct approach #2

$$\Psi_{S} = D_{e^{\uparrow}h^{\downarrow}}^{G} D_{e^{\downarrow}h^{\uparrow}}^{G} + D_{e^{\uparrow}h^{\uparrow}}^{G} D_{e^{\downarrow}h^{\downarrow}}^{G}$$

where G stands for "geminal".

Geminal orbitals:

$$\phi_G(\boldsymbol{e}_i, \boldsymbol{h}_j) = \sum_{\alpha, \beta=1}^n c_{\alpha\beta} f_\alpha(\boldsymbol{e}_i) f_\beta(\boldsymbol{h}_j)$$

These are hard-ish to differenciate when in a determinant, as we need separate derivatives for \mathbf{e}_i and \mathbf{h}_i .

4. Correct approach #2

$$\Psi_{S} = D_{e^{\uparrow}h^{\downarrow}}^{G} D_{e^{\downarrow}h^{\uparrow}}^{G} + D_{e^{\uparrow}h^{\uparrow}}^{G} D_{e^{\downarrow}h^{\downarrow}}^{G}$$

A particular case of the former (disregarding the crystal) is:

$$\phi_G(\boldsymbol{e}_i - \boldsymbol{h}_j) = \sum_{\alpha=1}^n c_\alpha e^{i\boldsymbol{k}_\alpha(\boldsymbol{e}_i - \boldsymbol{h}_j)} + \phi_P(\boldsymbol{e}_i - \boldsymbol{h}_j)$$

* This form of wave function also includes the right limits in it.
* Haven't tried it.

4. Correct approach #2

Possible problems of geminals:

* Geminals require some work on determinant handling. And I'm lazy.* What basis functions to choose? Must minimize number of parameters.

Possible problems of particular form:

* Wigner Crystals require (almost) the same treatment as geminals. And I'm still lazy.

Possible problems of both:

* Larger number of parameters than approach #1.

* Perhaps optimization problems?

* Untested.

5. Conclusions

* Previous way of analyzing phase diagram must be discarded in favour of global wave functions + density matrices.

- * Two forms of global trial wave function proposed. Which to choose?
- * Optimization issues. Must be careful.
- * Analysis of phases using density matrices never performed before on this system. What kind of transitions are we going to encounter? What objects to analyze?
- * Extrapolation to infinite size:
 - * Can it be performed with the resulting energies?
 - * Can it be performed on the density matrices?
 - * May it be possible to extrapolate the phase diagram itself?