Going beyond the Slater-Jastrow wave function in fermionic systems

Pablo López Ríos

Theory of Condensed Matter group Cavendish Laboratory. University of Cambridge Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

What are trial wave functions used for in QMC?

1. VMC: trial wave functions are used to evaluate the energy:

 $E_{VMC} = \frac{1}{N} \sum_{i=1}^{N} \frac{H \Psi_{T}(\boldsymbol{R}_{i})}{\Psi_{T}(\boldsymbol{R}_{i})}$

Quality of $\boldsymbol{E}_{_{\boldsymbol{VMC}}}$ determined by quality of $\boldsymbol{\Psi}_{_{\boldsymbol{T}}}$

2. VMC allows for optimization of $\Psi_{\!_{\rm T}}$, as

$$E_0 \leq E_{VMC} = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle}$$

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

What are trial wave functions used for in QMC?

3. DMC: high energy components of $\Psi_{_{\rm T}}$ are projected out using iTDSE

If DMC unconstrained, $\Psi_{_{\rm T}}$ 'unwraps' into the bosonic ground state

The fixed-node approximation (FNA) cures this by preventing the fermions from crossing the nodes of $\Psi_{_{\rm T}}$

Quality of $E_{_{FN\text{-}DMC}}$ determined by quality of the nodal surface of $\Psi_{_{\rm T}}$

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Which trial wave functions are used in QMC?

1. Hartree-Fock

$$\Psi_{HF} = D_{\uparrow}(\boldsymbol{R}_{\uparrow}) D_{\downarrow}(\boldsymbol{R}_{\downarrow}) \quad ; \quad D_{\sigma}(\boldsymbol{r}_{1}^{\sigma}, \dots, \boldsymbol{r}_{N_{\sigma}}^{\sigma}) = \begin{vmatrix} \phi_{1}^{\sigma}(\boldsymbol{r}_{1}^{\sigma}) & \phi_{2}^{\sigma}(\boldsymbol{r}_{1}^{\sigma}) & \vdots & \phi_{N_{\sigma}}^{\sigma}(\boldsymbol{r}_{1}^{\sigma}) \\ \phi_{1}^{\sigma}(\boldsymbol{r}_{2}^{\sigma}) & \phi_{2}^{\sigma}(\boldsymbol{r}_{2}^{\sigma}) & \vdots & \phi_{N_{\sigma}}^{\sigma}(\boldsymbol{r}_{2}^{\sigma}) \\ \dots & \dots & \dots \\ \phi_{1}^{\sigma}(\boldsymbol{r}_{N_{\sigma}}^{\sigma}) & \phi_{2}^{\sigma}(\boldsymbol{r}_{N_{\sigma}}^{\sigma}) & \vdots & \phi_{N_{\sigma}}^{\sigma}(\boldsymbol{r}_{N_{\sigma}}^{\sigma}) \end{vmatrix}$$

- * Correct anti-symmetry (exchange)
- * Constructed from one-particle orbitals
- * No correlations taken into account (except multi-determinants)
- * Local energy diverges when two particles coalesce

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Which trial wave functions are used in QMC?

2. Slater-Jastrow

$$\Psi_{SJ} = e^{J(R)} \Psi_{S}(R)$$
; $J(R) = J_{e-e}(R) + J_{e-N}(R) + J_{e-e-N}(R) + ...$

- * Ability to introduce arbitrary correlations (2-body, 3-body, ...)
- * Ability to remove divergencies: stable calculations
- * Well-known functional forms

* Inability to modify the nodal surface

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

The Slater-Jastrow wave function

1. What is the effect of exp(J) on the HF wave function?

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

The Slater-Jastrow wave function

1. What is the effect of exp(J) on the HF wave function?

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

The Slater-Jastrow wave function

2. What is the effect of exp(J) on the energy?

	Energy (au)	σ² (au)	CE (%)
HF	0.5694(5)	19.3(6)	0.0
J=U(minimal)	0.5346(1)	1.61(3)	88.0(5)
J=U	0.5332(1)	1.22(1)	91.5(5)
J=U+P	0.53201(9)	0.72(1)	94.5(4)
Best (DMC)	0.52985(5)	N/A	100.0

3D 54-ELECTRON HEG AT RS=1.0 VMC RESULTS USING 30,000 CONFIGURATIONS

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

1. History of backflow

Backflow formulated:

Feynman, Cohen, PR 102, 1189 (1956)

Backflow first used in QMC:

PANOFF, CARLSON, PRL 62, 1130 (1989)

Backflow first applied to electronic systems:

KWON, CEPERLEY, MARTIN, PRB 48, 12037 (1993)

Backflow applied to inhomogeneous systems:

PRESENT WORK

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

2. What is backflow?

First introduced to conserve particle current in trial WFs

the current at a point **a** is $\mathbf{j}(\mathbf{a}) = \hbar m^{-1} |h(\mathbf{a})|^2$. The wave function (11) therefore leads to the picture of a total current $\hbar \mathbf{k} m^{-1}$ (assume $f |h(\mathbf{a})|^2 d\mathbf{a} = 1$) distributed over a small region and having everywhere the same direction, with no appreciable change in the number density anywhere. Such a picture clearly cannot represent anything like a stationary state, since in a stationary state the current is divergence-free and there would necessarily be a return flow directed oppositely to \mathbf{k} .

One way to incorporate such a backflow into (11) is to multiply the wave function by $\exp[i \sum g(\mathbf{r}_i)]$, obtaining

 $\psi = \varphi \exp[i \sum g(\mathbf{r}_i)] \sum h(\mathbf{r}_i) \exp(i\mathbf{k} \cdot \mathbf{r}_i). \quad (12)$

Application of the velocity operator $-i\hbar m^{-1}\nabla_i$ shows that, in addition to whatever velocity it had in (11), the eth atoms now has an extra velocity $\hbar m^{-1}\nabla_i(x_i)$.

"ENERGY SPECTRUM OF EXCITATIONS IN LIQUID HELIUM" R. P. FEYNMAN, M. COHEN, PHYS. REV. 102, 1189 (1956) Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

2. What is backflow?

A set of collective coordinates $\{x_i(R)\}$ is defined so that the resulting quasi-particles "avoid" each other:

DYNAMICAL VIEW OF HOW QUASI-PARTICLES OUGHT TO BEHAVE. As 1 moves, 2 clears the way, while 3 barely notices Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

- 2. What is backflow?
 - A set of collective coordinates $\{x_i(R)\}$ is defined so that the resulting quasi-particles "avoid" each other:

Backflow transformations

3. The backflow $\eta(r)$ function

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

3. The backflow $\eta(r)$ function

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

4. Origin of backflow: derivations and justification

* Feynman & Cohen: conservation of particle current

* Ceperley et al.: imaginary time propagation argument

Trial wave functions in QMC
The Slater-Jastrow wave function
Backflow transformations
Backflow in real systems
Conclusions

Backflow transformations

4. Origin of backflow: derivations and justification

EFFECT OF A JASTROW FACTOR

COMPLEMENTARY EFFECT.

THE MOST GENERAL WAY OF DOING THIS IS GIVEN BY BACKFLOW Trial wave functions in QMC

The Slater-Jastrow wave function

Backflow transformations

Backflow in real systems

Conclusions

Backflow transformations

5. Using backflow in QMC

To avoid interference between Jastrow & backflow, use:

 $\Psi_{BF} = e^{J(\boldsymbol{R})} \Psi_{S}(\boldsymbol{X})$

Parametrize the backflow $\eta(r_{_{\rm ii}})$ function appropriately:

$$\eta(r) = \lambda \frac{1 + sr}{\rho + \omega r + r^{\alpha}} \qquad \eta(r) = \lambda \exp\left[-\left(\frac{r - c}{\omega}\right)\right]$$

RATIONAL FORM. KWON ET AL. (1993)

$$\eta(r) = \sum_{m=0}^{N_{exp}} c_m r^m$$

GAUSSIAN FORM. HOLZMANN ET AL. (2003)

POLYNOMIAL FORM. PRESENT WORK Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

5. Using backflow in QMC

Must:

- * Smoothly truncate the backflow function
- * Not use single-electron update algorithms (hence scales as N^4)
- * Constrain parameters so that cusp conditions are still verified
- * Optimize Jastrow+backflow altogether

Trial wave functions in QMC
The Slater-Jastrow wave function
Backflow transformations
Backflow in real systems
Conclusions

Backflow transformations

6. What is the effect of backflow on the SJ wave function?

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

6. What is the effect of backflow on the SJ wave function?

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

6. What is the effect of backflow on the SJ wave function?

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

7. What is the effect of backflow on the energy?

	Minimal Jastrow			J=U			J=U+P		
	Energy (au)	σ² (au)	CE (%)	Energy (au)	σ² (au)	CE (%)	Energy (au)	σ² (au)	CE (%)
No backflow	0.5346(1)	1.61(3)	88.0(5)	0.5332(1)	1.22(1)	91.5(5)	0.53201(9)	0.72(1)	94.5(4)
Polynomial (8)	0.53186(9)	0.723(8)	94.9(4)	0.53171(9)	0.663(8)	95.3(4)	0.53014(4)	0.168(4)	99.3(2)
Gaussian	0.53194(9)	0.736(7)	94.7(4)	0.53151(8)	0.628(6)	95.8(4)	0.53034(5)	0.208(3)	98.8(3)*
Rational	0.53203(9)	0.769(8)	94.5(4)	0.53151(8)	0.625(7)	95.8(4)	0.53019(6)	0.171(3)	99.1(2)
Best (DMC)	0.52985(5)	N/A	100.0						

3D 54-ELECTRON HEG AT RS=1.0 VMC RESULTS USING 30,000 CONFIGURATIONS Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow transformations

- 8. Key concepts
 - * Backflow as a transformation complementary to the Jastrow
 - * There exists a set of preferred directions seen by each electron
 - * Backflow displacement expanded using the former
 - * Use of expansions (e.g. polynomials) advisable

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

1. What do we mean by "real systems"?

Systems with inhomogeneous external potentials:

* Systems with atoms (atoms, molecules, solids)

* Systems with arbitrary external potentials (infinite wells, harmonic potentials...)

> Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

- 2. How to apply the "key concepts"
 - a) Find set of "preferred directions" seen by each electron
 - b) Write backflow displacement as a vector field expanded in such set
 - c) Use power expansions to parametrize

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

- 2. How to apply the "key concepts"
 - a) Find set of "preferred directions" seen by each electron (systems with atoms)

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

- 2. How to apply the "key concepts"
 - a) Find set of "preferred directions" seen by each electron (systems with atoms)

Backflow in real systems

2. How to apply the "key concepts"

 $\neq l$

b) Write backflow displacement as a vector field expanded in such set

$$\xi_{i} = \xi_{i}^{e-e} + \xi_{i}^{e-N} + \xi_{i}^{e-e-N}$$

$$\xi_{i}^{e-e} = \sum_{j \neq i}^{N} \eta(r_{ij}) \mathbf{r}_{ij}$$

$$\xi_{i}^{e-N} = \sum_{I}^{N} \mu(r_{iI}) \mathbf{r}_{II}$$

$$\xi_{i}^{e-e-N} = \sum_{I}^{N} \sum_{I}^{N_{ion}} \left[\Phi(r_{ij}, r_{iI}, r_{jI}) \mathbf{r}_{ij} + \Theta(r_{ij}, r_{iI}, r_{jI}) \mathbf{r}_{iI} \right]$$

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

3. What does inhomogeneous backflow look like?

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

3. What does inhomogeneous backflow look like?

CLOSE-UP OF PREVIOUS FIGURE

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow corrections in QMC Backflow in real systems 3. What does inhomogeneous backflow look like? 0.15 THE E-N TERM: * SHAPE STRONGLY DEPENDS 'mu' function ON THE SYSTEM 0.1 * OVERLAPS WITH ORBITAL **OPTIMIZATION** 0.05 Backflow Trial wave functions in QMC The Slater-Jastrow wave function -0.05 **Backflow transformations** 0 r (au) Backflow in real systems Electron-Nucleus $\mu(r_{ij})$ backflow function for the Si_2 molecule Conclusions PABLO LÓPEZ RÍOS

Backflow in real systems

- 4. Inhomogeneous backflow: limitations
 - * e-N cusp conditions are satisfied by the orbitals.
 3-body term has to be greatly constrained in systems with bare nuclei.

* Use of pseudo-potentials in QMC has some known issues. The ability to reduce the variance is limited.

> Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

5. Inhomogeneous backflow: results

	<u>. I I I I I I I I I I I I I I I I I I I</u>						
	Slater-Jastrow			Backflow			
	Energy (au)	σ² (au)	CE (%)	Energy (au)	σ² (au)	CE (%)	
	100 5474		0.0				
	-128.5471	IN/A	0.0				
VMC	-128.898(3)	1.134(9)	89.9(8)	-128.919(2)	0.413(3)	95.2(5)	
DMC	-128.9238(7)	N/A	96.5(2)	-128.928(1)	N/A	97.5(3)	
Exact	-128.9376	N/A	100.0			Trial wave fur	nctions in QM
RESULTS FOR ALL-ELECTRON Ne ATOM						The Slater-Jastrow wave function Backflow transformations	
						Backflow in	n real systems
						Conc	lusions
						PABLOL	ÓPEZ RÍOS

Backflow in real systems

5. Inhomogeneous backflow: results

		Sla	ter-Jastrow		Backflow			
		Energy (au)	σ² (au)	CE (%)	Energy (au)	σ² (au)	CE (%)	
Silicon atom	HF	-3.677(1)	0.206(8)	0	-	-		
	VMC	-3.7537(5)	0.0232(4)	90(1)	-3.7579(3)	0.0100(3)	95(1)	
	DMC	-3.7599(4)	N/A	97(1)	-3.7624(5)	N/A	100	
Silicon dimer	HF	-7.377(2)	0.56(2)	0	-	-	H	
	VMC	-7.5813(9)	0.0750(8)	83.0(8)	-7.5906(7)	0.0480(5)	86.8(7)	
	DMC	-7.6232(9)	N/A	100	-7.618(3)	N/A	98(2)	

Results for Si atom and Si dimer using pseudopotentials

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Backflow in real systems

- 6. What else needs to be done?
 - * Ceperley's derivation yields $\xi_i = \nabla_i f(\mathbf{R})$. Would this improve the calculations? Is the rotational part important?
 - * Try on other inhomogeneous systems
 - * Produce a large-ish set of benchmark results
 - * Study overlap with other methods for wave function optimization
 - * Etcetera

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

Conclusions

- *Importance of having good trial wave functions in QMC
- * Homogeneous backflow transformation
- * Systematic extension to inhomogeneous systems
- * Backflow combined with Jastrow optimization excellent results
- * Further study how to combine with other methods

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions

The End

"Going beyond the Slater-Jastrow wave function in fermionic systems"

Pablo López Ríos

Theory of Condensed Matter group Cavendish Laboratory. University of Cambridge

Trial wave functions in QMC The Slater-Jastrow wave function Backflow transformations Backflow in real systems Conclusions