QMC dissociation energies of three-electron hemibonded radical cation dimers ... and water clusters

Idoia G. de Gurtubay

TCM group. Cavendish Laboratory

University of Cambridge

Outline

1. Two-center three-electron-bond radical cations

- \blacksquare He, H₂O, NH₃, HF, Ne
- Hemibonded

 $\blacksquare A_2^{+\bullet} \to A + A^{+\bullet}$

Outline

Motivation

Outline

1. Two-center three-electron-bond radical cations

- \blacksquare He, H₂O, NH₃, HF, Ne
- Hemibonded

$$\blacksquare \mathsf{A}_2^{+\bullet} \to \mathsf{A} + \mathsf{A}^{+\bullet}$$

- 2. Water radical
 - Hemibonded and proton transferred structures

Outline

Motivation

Results

Outline

1. Two-center three-electron-bond radical cations

- \blacksquare He, H₂O, NH₃, HF, Ne
- Hemibonded

- $\blacksquare \mathsf{A}_2^{+\bullet} \to \mathsf{A} + \mathsf{A}^{+\bullet}$
- 2. Water radical
 - Hemibonded and proton transferred structures

3. Water clusters

- Dimer: $(H_2O)_2 \rightarrow 2H_2O$
- Trimer: $(H_2O)_3 \rightarrow 3H_2O$

MotivationResults

Conclusion

Outline

Why the 3 electron hemibonded systems?

- A · · · A^{+•}
 - ◆ 2 electrons in a bonding state
 - 1 electron in an antibonding state

Outline

Motivation

Results

Why the 3 electron hemibonded systems?

- A · · · A^{+•}
 - 2 electrons in a bonding state
 - 1 electron in an antibonding state

Failure of standard DFT: overstimation of the stability of A^{+•}₂

- Self-interaction error (inaccurate XC functionals)
 - 1 e⁻ system: XC functionals do not obey

 $\mathsf{E}_{\mathrm{C}}\text{=}0\text{; }\mathsf{E}_{\mathrm{X}}\text{=}\text{-}\mathsf{E}_{\mathrm{H}}$

Self-interaction corrections

Why the 3 electron hemibonded systems?

- A · · · A⁺•
 - 2 electrons in a bonding state
 - 1 electron in an antibonding state

Failure of standard DFT: overstimation of the stability of A^{+•}₂

- Self-interaction error (inaccurate XC functionals)
 - 1 e⁻ system: XC functionals do not obey

 $\mathsf{E}_{\mathrm{C}}\text{=}0\text{; }\mathsf{E}_{\mathrm{X}}\text{=}\text{-}\mathsf{E}_{\mathrm{H}}$

- Self-interaction corrections
- MP2, MP4, CI, CCSD(T)
 - Basis set limit problem
 - Accurate dissociation energies for small systems

Outline

- Motivation
- Results
- Conclusion

QMC calculations for $A_2^{+\bullet}$

- How good is QMC?
 - Benchmark: experiment and CCSD(T)
 - Good test for pseudopotentials

Outline

MotivationResults

QMC calculations for $A_2^{+\bullet}$

- How good is QMC?
 - Benchmark: experiment and CCSD(T)
 - Good test for pseudopotentials

\Downarrow

- Slater-Jastrow trial wave function
 - Hartree-Fock single-particle orbitals using Gaussian basis sets (CCSD(T) geometries)
 - Jastrow factor
- All electron
- Pseudopotential

Outline

- MotivationResults
- Conclusion

Helium: $\text{He}_2^{+\bullet} \rightarrow \text{He} + \text{He}^{+\bullet}$

Total energies (Ha)

		Не	He ^{+●}	He_2^{+ullet}
AE	HF	-2.86165	-1.99997	-4.93281
	VMC	-2.90360(6)	-1.99997(4)	-4.9899(4)
	DMC	-2.903724(8)	-2.00000(1)	-4.99416(6)
Psp	HF	-2.86017	-1.99785	-4.92923
	VMC	-2.90189(6)	-1.99814(7)	-4.98968(7)
	DMC	-2.90229(1)	-1.99827(1)	-4.99046(4)

	He	He_2^{+ullet}
AE	99.7	93.1
pseudo	99.1	98.7

Helium: $\text{He}_2^{+\bullet} \rightarrow \text{He} + \text{He}^{+\bullet}$

Total energies (Ha)

		Не	He ⁺ ●	He_2^{+ullet}	D_e (kcal/mol)
AE	HF	-2.86165	-1.99997	-4.93281	44.67
	VMC	-2.90360(6)	-1.99997(4)	-4.9899(4)	54.1(3)
	DMC	-2.903724(8)	-2.00000(1)	-4.99416(6)	56.75(4)
Psp	HF	-2.86017	-1.99785	-4.92923	44.68
	VMC	-2.90189(6)	-1.99814(7)	-4.98968(7)	56.26(7)
	DMC	-2.90229(1)	-1.99827(1)	-4.99046(4)	56.41(3)

	D_e (kcal/mol)
BLYP	83.30
B3LYP	77.38
CCSD(T)	56.04
SS(a=0.2)	54.94
Exp	56.94

Water. $(H_2O)_2^{+\bullet} \rightarrow H_2O + H_2O^{+\bullet}$

Total energies (Ha)

		H_2O	$H_2O^{+\bullet}$	$(H_2O)_2^{+\bullet}$
AE	HF	-76.0587	-75.6580	-151.7430
	VMC	-76.324(5)	-75.905(2)	-152.257(7)
	DMC	-76.42102(4)	-75.9538(2)	-152.4341(3)
Psp	HF	-16.8947	-16.4954	-33.4202
	VMC	-17.182(2)	-16.723(2)	-33.947(3)
	DMC	-17.20634(2)	-16.7389(2)	-34.00614(8)

	H_2O	$H_2O^{+\bullet}$	$(H_2O)_2^{+ullet}$
AE	73.2	83.5	74.4
pseudo	92.1	93.4	89.9

Water. $(H_2O)_2^{+\bullet} \rightarrow H_2O + H_2O^{+\bullet}$

Total energies (Ha)

		H_2O	$H_2O^{+\bullet}$	$(H_2O)_2^{+ullet}$	D_e (kcal/mol)
AE	HF	-76.0587	-75.6580	-151.7430	45.24
	VMC	-76.324(5)	-75.905(2)	-152.257(7)	29.5
	DMC	-76.42102(4)	-75.9538(2)	-152.4341(3)	37.2(2)
Psp	HF	-16.8947	-16.4954	-33.4202	46.74
	VMC	-17.182(2)	-16.723(2)	-33.947(3)	26.4
	DMC	-17.20634(2)	-16.7389(2)	-34.00614(8)	38.2(1)

	H_2O			D_e (kcal/mol)
CCSD(T)-R12	-76.437333	-	BLYP	52.43
CCSD(T) CBS limit	-76.439(2)		B3LYP	59.69
DMC	-76.4207(2)		MP2/QZ	38.05
Experiment	-76.438		CCSD(T)	39.2;40.75
	<u>.</u>		SS(a=0.2)	41.43

		NH_3	$NH_3^{+\bullet}$	$(NH_3)^{+\bullet}_2$
AE	HF	-56.2188	-55.9028	-112.1517
	VMC	-56.474(4)	-56.109(3)	-112.636(5)
	DMC	-56.55028(7)	-56.17563(6)	-112.78082(3)
Psp	HF	-11.4581	-11.1434	-22.6327
	VMC	-11.711(2)	-11.340(1)	-23.097(2)
	DMC	-11.730147(3)	-11.35668(2)	-23.14230(8)

	NH_3	NH_3^{+ullet}	$(NH_3)_2^{+\bullet}$
AE	77.0	75.6	77.0
pseudo	93.0	92.2	91.1

		NH_3	$NH_3^{+\bullet}$	$(NH_3)_2^{+\bullet}$	D_e (kcal/mol)
AE	HF	-56.2188	-55.9028	-112.1517	18.89
	VMC	-56.474(4)	-56.109(3)	-112.636(5)	33(3)
	DMC	-56.55028(7)	-56.17563(6)	-112.78082(3)	34.46(5)
Psp	HF	-11.4581	-11.1434	-22.6327	19.58
	VMC	-11.711(2)	-11.340(1)	-23.097(2)	29(2)
	DMC	-11.730147(3)	-11.35668(2)	-23.14230(8)	34.81(5)

	D_e (kcal/mol)
BLYP	48.55
B3LYP	44.21
MP2/6-311G**	38.05
CCSD(T)	36.34
SS(a=0.2)	34.61

		HF	HF ⁺ ●	$(HF)_2^{+\bullet}$
AE	HF	-100.06079	-99.53669	-199.61933
	VMC	-100.335(6)	-99.787(6)	-200.182(9)
	DMC	-100.44162(7)	-99.84915(7)	-200.3506(1)
Psp	HF	-24.51781	-23.99394	-48.53175
	VMC	-24.805(3)	-24.216(3)	-49.050(4)
	DMC	-24.82861(2)	-24.23526(2)	-49.11834(6)

	HF	HF^{+ullet}	$(HF)_2^{+\bullet}$
AE	72.0	80.1	76.9
pseudo	92.4	92.0	88.3

		HF	HF ⁺ ●	$(HF)_2^{+\bullet}$	D_e (kcal/mol)
AE	HF	-100.06079	-99.53669	-199.61933	13.71
	VMC	-100.335(6)	-99.787(6)	-200.182(9)	37.65060
	DMC	-100.44162(7)	-99.84915(7)	-200.3506(1)	37.5(1)
Psp	HF	-24.51781	-23.99394	-48.53175	12.55
	VMC	-24.805(3)	-24.216(3)	-49.050(4)	18.19779
	DMC	-24.82861(2)	-24.23526(2)	-49.11834(6)	34.18(4)

	D_e (kcal/mol)
BLYP	68.80
B3LYP	58.50
MP2/6-311G**	43.05
CCSD(T)	40.22
SS(a=0.2)	46.33

Neon. Ne $_2^{+\bullet} \rightarrow$ Ne + Ne $^{+\bullet}$

Total energies (Ha)

		Ne	Ne ^{+●}	$Ne_2^{+\bullet}$
AE	HF	-128.539306	-127.816842	-256.358275
	VMC	-128.895(7)	-128.089(7)	-257.00(1)
	DMC	-128.92554(7)	-128.12954(6)	-257.0946(2)
Psp	HF	-34.610135	-33.887225	-68.500548
	VMC	-34.883(3)	-34.094(3)	-68.995(5)
	DMC	-34.9066(3)	-34.11083(3)	-69.05587(7)

	Ne	Ne ^{+●}	Ne_2^{+ullet}
AE	92.1	87.0	87.0
pseudo	92.0	92.4	89.0

		Ne	Ne ^{+●}	$Ne_2^{+\bullet}$	D_e (kcal/mol)
AE	HF	-128.539306	-127.816842	-256.358275	1.33
	VMC	-128.895(7)	-128.089(7)	-257.00(1)	10
	DMC	-128.92554(7)	-128.12954(6)	-257.0946(2)	24.8(1)
Psp	HF	-34.610135	-33.887225	-68.500548	2.00
	VMC	-34.883(3)	-34.094(3)	-68.995(5)	11(4)
	DMC	-34.90660(3)	-34.11083(3)	-69.05587(7)	24.12(5)

	D_e (kcal/mol)
BLYP	75.41
B3LYP	60.54
MP2/6-311G**	31.72
CCSD(T)	30.87
SS(a=0.2)	47.95

Summary for hemibonded systems

Outline

Motivation

Results

Conclusion

QMC works well for the D_e of 3-electron hemibonded systems

- Consistent values between QMC and existing CCSD(T) calculations
- AE and pseudopotential calculations are in good agreement

Very good quality of the pseudopotentials used

Useful for larger systems

 \downarrow

Water radical: $(H_2O)_2^{+\bullet}$

Hemibonded structure

Proton transferred structure

 $(H_3O\cdots OH)^{+\bullet}$

Water radical: $(H_2O)_2^{+\bullet}$

Hemibonded structure

 $(\mathsf{H}_2\mathsf{O}\cdots\mathsf{O}\mathsf{H}_2)^{+\bullet}$

E_{DMC}	=-152.4341(3)	Ha
$E_{\mathrm{CCSD}(\mathrm{T})}$	=-152.2847	Ha

	Δ (kcal/mol)
DFT	-5.1
MP4	8.9
CCSD(T) extr	7.7
DMC (AE)	9.7(2)
DMC (Psp)	10.13(8)

Proton transferred structure $(H_3O\cdots OH)^{+\bullet}$

E_{DMC}	=-152.4496(2)	Ha
$E_{\mathrm{CCSD}(\mathrm{T})}$	=-152.2967	Ha

Slightly different geometry:

	Δ (kcal/mol)
DMC (AE)	14.8 (5)
DMC (Psp)	14.6 (2)

- A lot of literature
 - HF: with increasing basis sets
 - DFT: several XC functionals
 - MP2: extrapolating to the Complete Basis Set (CBS) limit
 - CCSD(T)
- Basis Set Superposition Error: artificially lowers the energy of the monomer
- CP correction (undercorrection)
- Open to experimental verification (except for the dimer)

Water dimer: $(H_2O)_2$

Water dimer: $(H_2O)_2$

	geometry	H_2O	$(H_2O)_2$	D_e (kcal/mol)
AE	HF	-76.0587	-152.124689	4.57
	VMC	-76.324(5)	-152.699(7)	32
	DMC	-76.42102(4)	-152.85151(9)	5.94(7)
Psp	HF	-16.8947	- 33.80119	7.40
	VMC	-17.182(2)	- 34.367(3)	6
	DMC	-17.20634(2)	- 34.42132(3)	5.41(3)

D_e (kcal/mol)
5 01(5)

	H_2O	$(H_2O)_2$
AE	73.2	79.0
pseudo	92.1	91.2

	<u> </u>
CCSD(T)	5.04(5)
MP2 CBS	5.00
DFT BLYP	4.3
DFT GGA	5.55
Experiment	5.44±0.7
DFT BLYP DFT GGA Experiment	4.3 5.55 5.44±0.7

Water trimer: $(H_2O)_3$

	geometry	H_2O	(H ₂ O) ₃	D_e (kcal/mol)
AE	HF	-76.0587	-228.1927	10.41
	VMC	-76.324(5)	-229.032(9)	37.6
	DMC	-76.42102(4)		
Psp	HF	-16.8947	-50.7077	14.80
	VMC	-17.182(2)	-51.569(3)	14.4
	DMC	-17.20634(2)	-51.64487(6)	16.22(6)

D_e	(kcal/n	nol)

	H_2O	$(H_2O)_3$
AE	73.2	
pseudo	92.1	91.9

	\mathbf{D}_e (Rediffield)
MP2 6Z	15.91
MP2 est	15.9(2)
DFT BLYP	13.7

Conclusion

Outline
Motivation
Results
Conclusion

- QMC calculations on the dissociation energy of
 - ◆ Hemibonded He, H₂O, NH₃, HF, Ne radical dimers
 - Hemibonded and H-bonded water radicals
 - Water dimer and trimer

 \downarrow

- Accurate results wrt experiment and quantum chemistry calculations
- Pseudopotential and AE calculations agree

 \implies use QMC with pseudopotentials for larger systems

 \downarrow

What next?

Multideterminants

- OutlineMotivation
- Results
- Conclusion

Backflow

I ...

Orbital optimization

Acknowledgments...

OutlineMotivationResults

Conclusion

Special thanks to Andrea, Mike and Neil for answering (soooooo patiently) all my questions about CRYSTAL and CASINO

Finantial support from the Basque Government through Research Fellowship BFI 04/183

Calculations were performed at the Cambridge-Cranfield High Performance Computing Facility