O OO O OO OOO OOO	

The Surface Energy of the Electron Gas

Matthew Foulkes Ben Wood

CMTH Group Department of Physics Imperial College London

Towler Institute Workshop, July 2005

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction o oooo ooo	QMC 00 0	Possible Explanations o ooo	Our Work 00 000000000 00 00000	Results and Summary
		Outline		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Introduction
- QMC
- Possible Explanations
- Our Work
- Results and Summary

Introduction • • • • • • • • • • • • •	QMC 00 0	Possible Explanations o ooo	Our Work 00 000000000 00	Results and Summary
			00000	

Who Cares?

- The surface of a semi-infinite electron gas is the simplest real test of most electronic structure methods.
- Exchange and correlation at surfaces is interesting.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Introduction	
0	
0000	
000	

QMC 00 0 Possible Explanations 0000 Our Work 00 000000000 00 00000 Results and Summary

The Controversy

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0000	00 000000000 00 00000	000

Surface energies extrapolated from DMC simulations of jellium spheres,

$$E = N\epsilon_{\rm bulk} + 4\pi r^2 \sigma + 2\pi r\gamma \; ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

agree with DFT.

• RPA- and GW-based calculations agree with DFT.

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 000	00 000000000 00 00000	000

For the surface energy of jellium at alkali-metal densities, the local-density approximation (LDA) and more advanced density-functional methods disagree strongly with the wave-function-based Fermi hypernetted-chain and diffusion Monte Carlo methods.

> Z. Yan, J.P. Perdew, S. Kurth, C. Fiolhais and L. Almeida Phys. Rev. B 61, 2595 (2000)

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Are the slab DMC results wrong?

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	000000000	0
000			00	
			00000	

Surface Energies at (in erg cm⁻²) when $r_s = 2.07$

Illinois (Li):	$\sigma_{\rm DMC}$	=	-465 ± 50
Illinois (Acioli):	$\sigma_{\rm DMC}$	=	-420 ± 80
Perdew et al .:	$\sigma_{\rm LDA}$	=	-610
	$\sigma_{ m GGA}$	=	-690
	$\sigma_{ m MGGA}$	=	-567
	$\sigma_{ m LDA/RPA}$	=	-553
	$\sigma_{ m GGA/RPA}$	=	-587
	/		

$$1 \text{ erg cm}^{-2} = 6.25 \times 10^{-5} \text{ eV }\text{\AA}^{-2}$$
$$= 6.42 \times 10^{-4} \text{ mHa Bohr}^{-2}$$

Introduction 0 0000 •000	QMC 00 0	Possible Explanations o ooo	Our Work 00 000000000 00 00000	Results and Summary

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → の < @

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 0●0	00	000	00 000000000 00 00000	000

$$egin{aligned} & N\epsilon_{ ext{slab}} \ = \ N\epsilon_{ ext{bulk}} + 2L^2\sigma \ & \sigma \ = \ rac{N}{2L^2}(\epsilon_{ ext{slab}} - \epsilon_{ ext{bulk}}) \ = \ rac{N}{2L^2}\Delta\epsilon_{ ext{slab}} \end{aligned}$$

Assuming $r_s = 2.07$ and s = 20, require

 $\Delta \epsilon_{\rm slab} \approx 0.1 \text{ mHa} \quad (3 \text{ meV})$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

for resolution $\Delta \sigma \approx 50 \text{ erg cm}^{-2}$.

Possible Explanations	Our Work	Results and Summary
000	00 000000000 00	000
	Possible Explanations o ooo	Possible Explanations Our Work 0 000 000 000000000 00000000 000000

Another problem:

$$\begin{array}{rcl} \sigma &\approx & -600 & \mathrm{erg}\,\mathrm{cm}^{-2} \\ \sigma_{\mathrm{s}} &\approx & -4600 & \mathrm{erg}\,\mathrm{cm}^{-2} \\ \sigma_{\mathrm{es}} &\approx & 1000 & \mathrm{erg}\,\mathrm{cm}^{-2} \\ \sigma_{\mathrm{xc}} &\approx & 3000 & \mathrm{erg}\,\mathrm{cm}^{-2} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Because σ passes through zero near $r_s = 2.07$, σ is much smaller than its components.

Introduction	
0	
0000	
()()()	

Possible Explanations 0000 Our Work 00 000000000 00 00000 Results and Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Variational Quantum Monte Carlo

- Guess $\Psi_T(\mathbf{R}) = \Psi_T(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N).$
- Evaluate

$$E[\Psi_{T}] = \int \Psi_{T}^{*}(\mathbf{R}) \hat{H} \Psi_{T}(\mathbf{R}) d\mathbf{R} = \int \frac{\hat{H} \Psi_{T}(\mathbf{R})}{\Psi_{T}(\mathbf{R})} |\Psi_{T}(\mathbf{R})|^{2} d\mathbf{R}$$

using Monte Carlo integration.

• Adjust $\Psi_T(\mathbf{R})$ to minimise $E[\Psi_T]$.

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	000000000	0
000			00000	
			00000	

$$\Psi_{T}(\mathbf{R}) = e^{J(\mathbf{R})} \begin{vmatrix} \psi_{1}(\mathbf{r}_{1}) & \psi_{1}(\mathbf{r}_{2}) & \dots & \psi_{1}(\mathbf{r}_{N}) \\ \psi_{2}(\mathbf{r}_{1}) & \psi_{2}(\mathbf{r}_{2}) & \dots & \psi_{2}(\mathbf{r}_{N}) \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \psi_{N}(\mathbf{r}_{1}) & \psi_{N}(\mathbf{r}_{2}) & \dots & \dots & \psi_{N}(\mathbf{r}_{N}) \end{vmatrix}$$

where

$$J(\mathbf{R}) = -\frac{1}{2} \sum_{i} \sum_{j \neq i} u_{\sigma_i,\sigma_j}(\mathbf{r}_i,\mathbf{r}_j) + \sum_{i} \chi(\mathbf{r}_i) .$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction
0
0000
000

QMC 00 Possible Explanations 0 000 Our Work 00 000000000 00 00000 Results and Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Diffusion Quantum Monte Carlo

$$rac{\partial \Psi}{\partial au} = -\hat{H}\Psi \Rightarrow$$

$$\Psi \longrightarrow c e^{-E_0 \tau} \Psi_0$$
 as $\tau \to \infty$

Defining $f = \Psi_T \Psi$, the equation of motion becomes a drift/diffusion/branching equation:

$$\frac{\partial f}{\partial \tau} = \frac{1}{2} \nabla_{\mathsf{R}}^2 f - \nabla_{\mathsf{R}} \cdot (\mathsf{v} f) - E_L f ,$$

where

$$\mathbf{v} = rac{1}{2}
abla \ln(|\Psi_T|^2)$$
 and $E_L = rac{\hat{H} \Psi_T}{\Psi_T}$

Introduction	
0	
0000	
000	

Possible Explanations

Our Work 00 000000000 00 00000 Results and Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Possible Explanations

- DMC is right and other methods fail.
- Fixed-node errors.
- Finite-size errors.
- Comparing apples and oranges (decreases likelihood of cancellation of errors).

Introduct	ion
0	
0000	
000	

QMC 00 0 Possible Explanations ○ ●○○

Our Work 00 000000000 00 00000 Results and Summary

Comparing Apples and Oranges

Effects of using different LDAs for the bulk calculation

・ロト・日本・日本・日本・日本・日本

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 0●0	00 000000000 00 00000	000

Acioli's DMC result was

$$\sigma_{
m DMC} \;=\; -420 \pm 80 \;
m erg \, cm^{-2}$$
 .

Pitarke noticed that Acioli had compared *fixed-node* slab results with *release-node* bulk results. By comparing Acioli's fixed-node slab results with *fixed-node* bulk results, Pitarke obtained:

$$\sigma_{\rm DMC} = -554 \pm 80 \, \rm erg \, cm^{-2}$$

(LDA result is -600 erg cm^{-2} .)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	° ⊙⊙●	00 000000000 00 00000	000

Li avoided this mistake, but did not account for Coulomb finite-size errors.

Here are surface energies calculated from our (uncorrected) fixed-node slab simulations and Ceperley and Alder's fixed-node bulk simulations.

Number of electrons	$\epsilon_{ m slab}$ (mHa)	σ (erg cm ⁻²)
332	-9.18 ± 0.13	-440 ± 30
466	-8.901 ± 0.097	-370 ± 20
588	-8.818 ± 0.088	-350 ± 20

If Li had included Coulomb corrections, his surface energy would have been even worse! Looks as if the fixed-node error is larger in the slab than the bulk.

Introduction	
0	
0000	
000	

QMC 00 0 Possible Explanations 0000 Results and Summary

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Trial Wave Functions

- Real-space grid in z direction.
- Plane waves in xy plane.

Introduction QMC Possible Explanations Our work Result 0 00 0 00 000000 0 0 000000 0 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)0

LDA energy as a function of the number of grid points

Introduction
0
0000
000

QMC 00 0 Possible Explanations 0000 Our Work

Results and Summary

Variance Optimisation Problems

Distribution of energies before and after variance optimisation

・ロト・日本・日本・日本・日本・日本

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	000	00 00000000 00 00000	000

- Variance and mean of initial configs reduced as expected, but variance and mean of new configs *increased*.
- New configs are more spread out: electron density outside slab increases. This decreases the KE, but increases the PE by a larger amount.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00 0	0 000	00 00000000 00 00000	000

Speculative Explanation

Since the initial configs do not venture outside the slab, the optimiser cannot "know" that going there is unfavourable.

But ...

- Reweighting does not help.
- Changing the initial sampling to include more configs with electrons outside the slab does not help.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

ntroduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 000	00 000000000 00 00000	000

Another Speculative Explanation

Long length scales cause optimisation problems.

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	000000000	0
000			00000	

Electron densities in LDA and VMC with short-range u

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	000000000	0
000			00	
			00000	

Electron densities in LDA and VMC with full short-range Jastrow (short-range *u* plus corresponding χ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0000	00	0	00	000
0000	0	000	000000	0

Electron densities in LDA and VMC with long-range u

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	000000000	0
000			00	
			00000	

Electron densities in LDA and VMC with full plasmon Jastrow (long-range *u* plus corresponding χ)

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 000	00 00000000 00 00000	000

Compromise Solution:

- LDA orbitals (with image-tail correction).
- Short-range u:

$$u(\mathbf{r}_i\sigma_i,\mathbf{r}_j\sigma_j) = \frac{lpha}{2(1+\delta_{\sigma_i\sigma_j})}\mathbf{e}^{-r_{ij}/lpha-r_{ij}^2/L_c^2}$$

• χ calculated analytically from u using Fahy prescription,

$$\chi(\mathbf{r}) = \frac{1}{2} \int \left[u(\mathbf{r}\uparrow,\mathbf{r}'\uparrow) + u(\mathbf{r}\uparrow,\mathbf{r}'\downarrow) \right] n(z') d^3r' ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

and a model n(z).

• Single parameter α optimised by hand.

ntroduction

QMC

Possible Explanations 000 Our Work

Results and Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Comparing Apples and Apples

Since
$$N = \frac{\text{Volume}}{\text{Volume per electron}} = \frac{L^2 s}{\frac{4}{3} \pi r_s^3} ,$$
 the definition of σ ,

$$N\epsilon_{\rm slab} = N\epsilon_{\rm bulk} + 2\sigma L^2$$
,

may be rewritten as

$$\epsilon_{\rm slab} = \epsilon_{\rm bulk} + \frac{8\pi r_{\rm s}^3 \sigma}{3 {\rm s}} \, .$$

Can obtain σ from dependence of ϵ_{slab} on thickness s.

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	00000000	0
000			00	
			00000	

Ideally,

$$\epsilon_{\rm slab} = \epsilon_{\rm bulk} + \frac{8\pi r_{\rm s}^3 \sigma}{3 {
m s}} ,$$

would be a function of s only. In practice, it also depends on L and w.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For accurate results, the L- and w-dependent contributions must be weak functions of s.

	Introduction 0 0000 000	QMC 00 0	Possible Explanations o ooo	Our Work ○○ ○○ ●○○○○	Results and Summary
--	----------------------------------	-----------------------	-----------------------------------	-------------------------------	---------------------

Finite-Size Errors

Ideally, ϵ_{slab} should depend on *s* only.

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 000	00 000000000 00 0●000	000

Energy per electron versus s/N when s = 18.4851

 $(s/N \text{ is proportional to } 1/L^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0	00 000000000 00 00000	000

- VMC energy decreases as *L*² increases.
- Probable cause is the L_c cut-off in the Jastrow factor.
- Are we going to be able to reach 0.1 mHa accuracy?

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 000	00 00000000 00 00000	000

In-Plane Finite-Size Errors

LDA electron density profiles for different values of L

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 000	00 00000000 00 0000	000

Slab-Width Oscillations

LDA surface energy as a function of s

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	● 00
0000	0	000	00000000	0
000			00	
			00000	

Results

Energy per electron versus s/N for three values of s

 $(s/N \text{ is proportional to } 1/L^2)$

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0 0000 000	00	0 000	00 000000000 00 00000	000

Linear Fit

The energy per electron (with $L^2 = 1150$) as a function of 1/s

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	000000000	0
000			00	
			00000	

From

$$\epsilon_{\rm slab} = \epsilon_{\rm bulk} + \frac{8\pi r_s^3 \sigma}{3s}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

and slope of straight line, find

Introduction	QMC	Possible Explanations	Our Work	Results and Summary
0	00	0	00	000
0000	0	000	00000000	0
000			00	
			00000	

From

$$\epsilon_{\rm slab} = \epsilon_{\rm bulk} + \frac{8\pi r_s^3 \sigma}{3s}$$

and slope of straight line, find

$$\sigma = -600 \pm 50 \,\mathrm{erg} \,\mathrm{cm}^{-1}$$
.

(Disappointingly?) consistent with other methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Introduction 0 0000 000	QMC 00 0	Possible Explanations o ooo	Our Work 00 000000000 00 00000	Results and Summary
		•		

- Previous QMC calculations were inaccurate:
 - · comparing apples with oranges.
 - poor treatment of finite-size errors.
- The surface energy is roughly as expected.
- More DMC results on the way.

(I hope . . .)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆