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Slater–Jastrow Wave Functions

• Slater–Jastrow wave functions are used in

QMC:

Ψ(R) = exp[J(R)]
∑
n

cnD↑
n(R)D↓

n(R).

• Free parameters in the Jastrow factor are:

1. polynomial expansion coefficients,

2. plane-wave expansion coefficients, and

3. cutoff lengths for isotropic terms.

• The plane-wave and polynomial expansion

coefficients occur linearly in the Jastrow

exponent.
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Why Optimise the Jastrow Factor?

• The DMC energy is independent of the

Jastrow factor (in the limit of zero time step

and infinite population).

• Optimising the Jastrow factor reduces

time-step and population-control biases.

• Better wave functions give smaller statisti-

cal error bars on estimated quantities.

• Extrapolated estimation (e.g. of charge

density) requires a good wave function.
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Reweighted Variance Minimisation

• Generate a set of configurations distributed
according to Ψ2

0 using VMC.

• Associate a weight of Ψ2/Ψ2
0 with each

config. (Jastrow factor doesn’t affect
nodal surface, so weights don’t diverge.)

• Reweighted mean local energy Ψ−1ĤΨ es-
timates 〈Ĥ〉Ψ and reweighted variance σ2

w
of Ψ−1ĤΨ estimates σ2 ≡ 〈Ĥ2〉Ψ − 〈Ĥ〉2Ψ.

• Can therefore estimate the energy variance
for any given parameter set using a fixed
sampling of configuration space.

• Variance is positive, but is zero if Ψ is an
eigenstate of Ĥ. So, minimise the variance
to optimise the wave function.
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Unreweighted Variance Minimisation

• If Ψ is an eigenstate of Ĥ, then Ψ−1ĤΨ is

constant in configuration space.

• Can therefore optimise Ψ by minimising

the unreweighted variance σ2
u of the local

energies of any fixed set of configurations.

• In limit of perfect sampling, σ2
w is indepen-

dent of Ψ0. This is not true of σ2
u.

• Can iterate unreweighted varmin to self-

consistency, however.

5



Example: 1D Quartic Potential

• Suppose a particle of unit mass moves in a

1D quartic potential. The Hamiltonian is

Ĥ = −1

2

∂2

∂x2
+ x4.

• Let the trial wave function be

Ψ(x) = exp
(
−αx2

)
,

• The energy expectation value is

E =
8α3 + 3

16α2
.

Minimum is E = 0.6814, when α = 0.9086.

• The variance of the energy is

σ2 =
4α6 − 6α3 + 3

8α4
.
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The minimum of σ2 is at α = 0.9676, for
which E = 0.6841.

• Suppose configurations are distributed ac-
cording to Ψ2

0 ≡ exp(−2βx2). Then

σ2
u =

4β2α4 + 3− 6βα2

8β4
.

The minimum of σ2
u for a given β is at

α =
1

2

√
3

β
.

• Repeated unreweighted varmins generate
a sequence of values of α, starting with
α0 = β, and satisfying αn = (1/2)

√
3/αn−1.

• The stationary point of this process, irre-
spective of the initial β, is α∞ = 0.9086.
This is equal to the result of energy min-
imisation, not variance minimisation!



Studies of Model Systems

• Model systems exist for which energy min-

imisation, reweighted varmin and SC un-

reweighted varmin give different results.

• In all cases studied, SC unreweighted

varmin leads to a lower energy than

reweighted varmin.

• Results of SC unreweighted varmin are of-

ten exactly the same as the results of en-

ergy minimisation.
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Linear Jastrow Parameters

• Suppose the Jastrow exponent is linear in
P parameters {α}:

J(R) =
P∑

i=1

fi(R)αi + J0(R).

• Then the local energy Ψ−1ĤΨ is a
quadratic function of the parameters.

• Suppose NC configurations are distributed
according to Ψ2

0.

• The unreweighted average local energy is
also quadratic in {α}. It has a global max-
imum at {α} corresponding to Ψ0.

• The unreweighted variance is a quartic
function of the parameters.
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• Sum over configs not required, so σ2
u can

be evaluated extremely rapidly.

• The coefficients of the quartic variance can
be accumulated in VMC.

• Along any line in parameter space, σ2
u is a

quartic polynomial of a single parameter.

• The global minimum of a quartic polyno-
mial can be determined analytically.

• Hence σ2
u can be minimised rapidly, exactly

and globally along lines in parameter space.

• After using BFGS to find a (local) min-
imum of σ2

u, one can perform billions of
analytic line minimisations along random
directions to look for lower minima.



Scaling

• Standard varmin scales as

O
(
N2P2NC

)
.

• The new varmin method scales as

O
(
P4

)
.

• Evaluating the “basis functions” fi(R) in

VMC scales as

O
(
PN2NC

)
.

• Evaluating the quartic coefficients in VMC

scales as

O
(
P4NC

)
.
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Nature of the Variance in the Space of
Linear Jastrow Parameters

• Nonglobal minima of σ2
u are only found for

a very poor sampling of config space.

• σ2
w is more likely to contain nonglobal min-

ima than σ2
u.

• For good samplings of config space, un-
reweighted and reweighted varmin give
very similar results; for poor samplings, un-
reweighted varmin is more stable.

• For poor Jastrow factors and large sam-
plings of config space, the minima of the
energy, σ2

w and σ2
u clearly differ.

• For high-quality Jastrow factors and good
samplings of config space, the minima of
the energy, σ2

w and σ2
u are very close.
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Sampling of Configuration Space

• Wave-function quality increases rapidly
with no. of configs used in optimisation.

• For small molecules, 10,000 configurations
are usually sufficient to optimise linear Jas-
trow parameters.

• Variance is a smooth function of linear pa-
rameters; it is not a smooth function of
the cutoff lengths, however.

• Improving the sampling of config space
makes the variance a smoother function of
the cutoff lengths.

• Can try to improve the quality of the sam-
pling of config space by removing configs
whose local energies are far from the mean.
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Wave-Function Flexibility

• Wave-function quality generally increases

rapidly as the number of free parameters is

increased, before saturating.

• The results obtained with a very large num-

ber of parameters are often poorer than

those obtained with smaller numbers.

12



Timing Results

• The optimisation phase in the new method

is almost instantaneous, irrespective of the

system size.

• The time taken to evaluate the basis func-

tions is generally negligible.

• The time taken to compute the quartic co-

efficients is significant for small systems,

but not for large systems (it is independent

of system size).

• Overall, new method is 3–10 times faster

than old method for a range of systems.
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Conclusions

Self-consistent unreweighted variance minimi-
sation is better than reweighted variance min-
imisation because:

1. In the limit of infinite sampling, the result-
ing energy is generally lower;

2. For small samplings of configuration space,
it is more stable;

3. The unreweighted variance is a quartic
function of linear Jastrow parameters, en-
abling rapid evaluation;

4. For any reasonable sampling of configura-
tion space, the unreweighted variance does
not have nonglobal minima in the space of
linear Jastrow parameters.
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